OBJECTIVES: This study aims to characterize patients with ANOCA by measuring their minimal microvascular resistance and to examine the pattern of vascular remodeling associated with these measurements.
METHODS: The authors prospectively included patients with ANOCA undergoing continuous thermodilution assessment. Lumen volume and vessel-specific myocardial mass were quantified using coronary computed tomography angiography (CTA). CMD was defined as coronary flow reserve <2.5 and high minimal microvascular resistance as >470 WU.
RESULTS: A total of 153 patients were evaluated; 68 had CMD, and 22 of them showed high microvascular resistance. In patients with CMD, coronary flow reserve was 1.9 ± 0.38 vs 3.2 ± 0.81 in controls (P < 0.001). Lumen volume was significantly correlated with minimal microvascular resistance (r = -0.59 [95% CI: -0.45 to -0.71]; P < 0.001). In patients with CMD and high microvascular resistance, lumen volume was 40% smaller than in controls (512.8 ± 130.3 mm3 vs 853.2 ± 341.2 mm3; P < 0.001). Epicardial lumen volume assessed by coronary CTA was independently associated with minimal microvascular resistance (P < 0.001). The predictive capacity of lumen volume from coronary CTA for detecting high microvascular resistance showed an area under the curve of 0.79 (95% CI: 0.69-0.88).
CONCLUSIONS: Patients with CMD and high minimal microvascular resistance have smaller epicardial vessels than those without CMD. Coronary CTA detected high minimal microvascular resistance with very good diagnostic capacity. Coronary CTA could potentially aid in the diagnostic pathway for patients with ANOCA.
METHODS: This prospective, investigator-initiated, single-arm, multicenter study enrolled patients with at least one epicardial lesion with an FFR ≤0.80 scheduled for PCI. Manual FFR pullbacks were used to calculate PPG. The primary outcome of optimal revascularization was defined as an FFR ≥0.88 after PCI.
RESULTS: A total of 993 patients with 1044 vessels were included. The mean FFR was 0.68±0.12, PPG 0.62±0.17, and the post-PCI FFR was 0.87±0.07. PPG was significantly correlated with the change in FFR after PCI (r=0.65 [95% CI, 0.61-0.69]; P<0.001) and demonstrated excellent predictive capacity for optimal revascularization (area under the receiver operating characteristic curve, 0.82 [95% CI, 0.79-0.84]; P<0.001). FFR alone did not predict revascularization outcomes (area under the receiver operating characteristic curve, 0.54 [95% CI, 0.50-0.57]). PPG influenced treatment decisions in 14% of patients, redirecting them from PCI to alternative treatment modalities. Periprocedural myocardial infarction occurred more frequently in patients with low PPG (<0.62) compared with those with focal disease (odds ratio, 1.71 [95% CI, 1.00-2.97]).
CONCLUSIONS: Pathophysiologic coronary artery disease patterns distinctly affect the safety and effectiveness of PCI. PPG showed an excellent predictive capacity for optimal revascularization and demonstrated added value compared with an FFR measurement.
REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04789317.