Displaying all 4 publications

Abstract:
Sort:
  1. Joseph N, Clayton JB, Hoops SL, Linhardt CA, Mohd Hashim A, Mohd Yusof BN, et al.
    Evol Bioinform Online, 2020;16:1176934320965943.
    PMID: 33281440 DOI: 10.1177/1176934320965943
    Childhood obesity is a serious public health problem worldwide. Perturbations in the gut microbiota composition have been associated with the development of obesity in both children and adults. Probiotics, on the other hand, are proven to restore the composition of the gut microbiome which helps reduce the development of obesity. However, data on the effect of probiotics on gut microbiota and its association with childhood obesity is limited. This study aims to determine the effect of probiotics supplement intervention on gut microbiota profiles in obese and normal-weight children. A total of 37 children, 17 normal weight, and 20 overweight school children from a government school in Selangor were selected to participate in this study. Participants were further divided into intervention and control groups. The intervention groups received daily probiotic drinks while the control groups continued eating their typical diet. Fecal samples were collected from the participants for DNA extraction. The hypervariable V3 and V4 regions of 16S rRNA gene were amplified and sequenced using the Illumina MiSeq platform. No significant differences in alpha diversity were observed between normal weight and obese children in terms of the Shannon Index for evenness or species richness. However, a higher intervention effect on alpha diversity was observed among normal-weight participants compared to obese. The participants' microbiome was found to fluctuate throughout the study. Analysis of the taxa at species level showed an increase in Bacteroides ovatus among the normal weight cohort. Genus-level comparison revealed a rise in genus Lachnospira and Ruminococcus in the overweight participants after intervention, compared to the normal-weight participants. The probiotics intervention causes an alteration in gut microbiota composition in both normal and overweight children. Though the association could not be defined statistically, this study has provided an improved understanding of the intervention effect of probiotics on gut microbiome dysbiosis in an underrepresented population.
  2. Gopalakrishna G, Langendam M, Scholten R, Bossuyt P, Leeflang M, Noel-Storr A, et al.
    Diagn Progn Res, 2017;1:11.
    PMID: 31095132 DOI: 10.1186/s41512-017-0011-4
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.].
  3. Global Burden of Disease Child and Adolescent Health Collaboration, Kassebaum N, Kyu HH, Zoeckler L, Olsen HE, Thomas K, et al.
    JAMA Pediatr, 2017 Jun 01;171(6):573-592.
    PMID: 28384795 DOI: 10.1001/jamapediatrics.2017.0250
    IMPORTANCE: Comprehensive and timely monitoring of disease burden in all age groups, including children and adolescents, is essential for improving population health.

    OBJECTIVE: To quantify and describe levels and trends of mortality and nonfatal health outcomes among children and adolescents from 1990 to 2015 to provide a framework for policy discussion.

    EVIDENCE REVIEW: Cause-specific mortality and nonfatal health outcomes were analyzed for 195 countries and territories by age group, sex, and year from 1990 to 2015 using standardized approaches for data processing and statistical modeling, with subsequent analysis of the findings to describe levels and trends across geography and time among children and adolescents 19 years or younger. A composite indicator of income, education, and fertility was developed (Socio-demographic Index [SDI]) for each geographic unit and year, which evaluates the historical association between SDI and health loss.

    FINDINGS: Global child and adolescent mortality decreased from 14.18 million (95% uncertainty interval [UI], 14.09 million to 14.28 million) deaths in 1990 to 7.26 million (95% UI, 7.14 million to 7.39 million) deaths in 2015, but progress has been unevenly distributed. Countries with a lower SDI had a larger proportion of mortality burden (75%) in 2015 than was the case in 1990 (61%). Most deaths in 2015 occurred in South Asia and sub-Saharan Africa. Global trends were driven by reductions in mortality owing to infectious, nutritional, and neonatal disorders, which in the aggregate led to a relative increase in the importance of noncommunicable diseases and injuries in explaining global disease burden. The absolute burden of disability in children and adolescents increased 4.3% (95% UI, 3.1%-5.6%) from 1990 to 2015, with much of the increase owing to population growth and improved survival for children and adolescents to older ages. Other than infectious conditions, many top causes of disability are associated with long-term sequelae of conditions present at birth (eg, neonatal disorders, congenital birth defects, and hemoglobinopathies) and complications of a variety of infections and nutritional deficiencies. Anemia, developmental intellectual disability, hearing loss, epilepsy, and vision loss are important contributors to childhood disability that can arise from multiple causes. Maternal and reproductive health remains a key cause of disease burden in adolescent females, especially in lower-SDI countries. In low-SDI countries, mortality is the primary driver of health loss for children and adolescents, whereas disability predominates in higher-SDI locations; the specific pattern of epidemiological transition varies across diseases and injuries.

    CONCLUSIONS AND RELEVANCE: Consistent international attention and investment have led to sustained improvements in causes of health loss among children and adolescents in many countries, although progress has been uneven. The persistence of infectious diseases in some countries, coupled with ongoing epidemiologic transition to injuries and noncommunicable diseases, require all countries to carefully evaluate and implement appropriate strategies to maximize the health of their children and adolescents and for the international community to carefully consider which elements of child and adolescent health should be monitored.

  4. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links