Displaying all 5 publications

Abstract:
Sort:
  1. Chaudhry AR, Ahmed R, Irfan A, Muhammad S, Shaari A, Al-Sehemi AG
    J Mol Model, 2014 Dec;20(12):2547.
    PMID: 25503703 DOI: 10.1007/s00894-014-2547-3
    We have investigated computationally the effects of π-conjugation extension on naphtha[2,1-b:6,5-b'] difuran (DPNDF); where we increase the number of fused NDF (central core) and furan rings in the parent molecule. The molecular structures of all analogues have been optimized at the ground (S0) and first excited (S1) states using density functional theory (DFT) and time-dependent density functional theory (TD-DFT), respectively. Then highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), photophysical properties, adiabatic/vertical electron affinities (EAa)/(EAv), adiabatic/vertical ionization potentials (IPa)/(IPv), and hole/electron reorganization energies λh/λe have been investigated. The effect of NDF and furan rings on structural and electro-optical properties has also been studied. Our calculated reorganization energies of 1a, 1b, and 2c reveal them, materials with balanced hole/electron charge transport, whereas 2a and 2b are good hole-transport materials. By increasing the number of furan rings; the photostability was augmented in 2a, 2b, and 2c.
  2. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Isa AR, Muhammad S, et al.
    J Mol Model, 2015 Aug;21(8):199.
    PMID: 26177706 DOI: 10.1007/s00894-015-2743-9
    The present study spotlights the designing of new derivatives of 2,7-bis (4-octylphenyl) naphtho [2,1-b:6,5-b'] difuran (C8-DPNDF) by substituting the alkyl groups (methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups) at para position. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods are employed to optimize the molecular structures in ground and first excited states, respectively. Several electro-optical properties including hole/electron reorganization energies (λh/λe), electron affinities (EAs), ionization potentials (IPs), molecular electrostatic potentials (MEP), and frontier molecular orbitals (FMOs) have been evaluated. Furthermore their transfer integrals and intrinsic mobilities values have also been calculated. From this study, it is found that hole mobility of octyl containing derivative is raised to 4.69 cm(2) V(-1) s(-1). Moreover with attaching octyl group, hole transfer integral values have also been enhanced in newly designed derivatives. The balanced hole and electron reorganization energies, and improved transfer integrals lead to enhanced mobility in derivatives with octyl group, highlighting them as an efficient hole transfer material. Unlike the other electro-optical properties, the intrinsic hole mobility has increased because of transfer integral values of octyl containing derivative C8-DPNDF due to the dense and close crystal packing of C8-DPNDF. However, photostability of furan-based materials has not changed by increasing length of extended alkyl chain. Thus our present investigation highlights the importance of alkyl auxiliary groups that are often neglected/replaced with simple methyl group to save computation costs. Graphical Abstract The hole and electron reorganization energies of naphtho[2,1-b:6,5-b']difuran derivatives.
  3. Chaudhry AR, Irfan A, Muhammad S, Al-Sehemi AG, Ahmed R, Jingping Z
    J Mol Graph Model, 2017 08;75:355-364.
    PMID: 28651184 DOI: 10.1016/j.jmgm.2017.05.012
    In the present study, we use the state of art density functional theory (DFT) techniques to calculate the structural, optoelectronic and nonlinear optical (NLO) properties for two novel chalcone derivatives. The geometrical structures of chalcone derivatives compound 1 and 2 are optimized using periodic boundary conditions (PBC) in solid-state phase as well as isolated single molecular geometry in the gas phase. The reasonable agreement is found among experimental, solid-state and gas phase single molecular geometries, which provide us, further confidence to explore the potential of above-entitled derivatives as good functional materials for electro-optical applications. For instance, the frequency dependent real parts of dielectric functions are calculated for compound 1 and 2. The maximum value of real part of the dielectric function for compound 1 and 2 at 0eV are computed as 4.35 and 6.68 for the polarization vectors of (001) directions, respectively, which reveals the fact that the compound 1 and 2 might be good charge transport materials. The reflectivities of the compound 1 and 2 are 0.64 and 0.45 revealing that the compound 2 might be more efficient material for organic photovoltaic (OPV) applications. The results of the refractive index improved by doping the strong electron withdrawing groups (EWGs) shows that the compound 2 might be good refractor of the photon as compared to compound 1. The calculated values for static second-order polarizability are 3498 and 10464 a. u. and for frequency dependent second harmonic generations are 2557 and 6429 a. u. for compound 1 and 2, respectively, which indicates their significant potential for possible nonlinear optical applications.
  4. Chaudhry AR, Ahmed R, Irfan A, Mohamad M, Muhammad S, Ul Haq B, et al.
    J Mol Model, 2016 Oct;22(10):248.
    PMID: 27683259
    Some important optoelectronic properties of naphtho[2,1-b:6,5-b']difuran (DPNDF) and its two derivatives have been limelighted by applying the density functional theory (DFT). Due to their low cost, high stability and earth abundance, the DPNDF and its derivatives are considered as potential organic semiconductor materials for their optoelectronics applications. Highly proficient derivatives are obtained systematically by attaching -CN (cyanide) to DPNDF at various sites. Our calculations indicate that DPNDF has a wide and direct band gap with an energy gap of 3.157 eV. Whereas the band gaps of its derivatives are found to be decreased by 88 meV for derivative "a" and 300 meV for derivative "b" as a consequence of p orbitals present in C and N atoms in derivative structures. The narrowing of the energy gap and density of states for the derivatives of DPNDF in the present investigation suggest that energy gap can be engineered for desirable optoelectronic applications via derivatives designing. Furthermore, their obtained results for optical parameters such as the dielectric and conductivity functions, reflectivity, refractive index, and the extinction coefficients endorses their aptness for optoelectronic applications. Graphical Abstract Real part of dielectric function for derivative "b".
  5. Ul Haq B, Kim SH, Chaudhry AR, AlFaify S, Butt FK, Tahir SA, et al.
    Chemphyschem, 2024 Mar 22.
    PMID: 38517984 DOI: 10.1002/cphc.202300605
    The extensive applications of MXenes, a novel type of layered materials known for their favorable characteristics, have sparked significant interest. This research focuses on investigating the impact of surface functionalization on the behavior of Mn2NX2 (X = O, F) MXenes monolayers using the "Density functional theory (DFT) based full-potential linearized augmented-plane-wave (FP-LAPW)" method. We observe and elucidate the variations in the physical properties of the Mn2NX2 by employing different surface terminations with F and O functional groups. We found that O-termination results in half-metallic behavior, whereas the N-termination evolves metallic characteristics within these MXene systems. Similarly, surface termination has effectively influenced their optical absorption efficiency. For instance, Mn2NO2 and Mn2NF2 effectively absorb UV light of magnitude 50.15×104 cm-1 and 37.71×104 cm-1, respectively. Additionally, they demonstrated prominent refraction and reflection characteristics, comprehensively discussed in the present work. Our predictions offer valuable perspectives into the optical and electronic characteristics of Mn2NX2-based MXenes, presenting the promising potential for implementing them in diverse optoelectronic devices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links