Displaying all 3 publications

Abstract:
Sort:
  1. Bala AA, Jatau AI, Yunusa I, Mohammed M, Mohammed AH, Isa AM, et al.
    Toxicon X, 2020 Dec;8:100064.
    PMID: 33319211 DOI: 10.1016/j.toxcx.2020.100064
    Antisnake venom (ASV) is the only specific and standard treatment for snakebite envenoming worldwide. The knowledge of antivenom dosage, mode of administration, availability, and logistics is essential to the healthcare practitioners (HCPs) in the management of snakebites. It is vital for the HCPs involved in the handling of ASVs to have its basic knowledge. The ASV contains proteins and can, therefore, easily get denatured if not handled appropriately, leading to poor therapeutic outcome. It is also essential for clinicians to be aware of the tendency of ASV to cause a severe life-threatening hypersensitivity reaction. There is currently no validated tool for assessing the knowledge of ASV among HCPs. Therefore, we developed and validated a tool for evaluating the HCPs knowledge of ASV. The items included in the tool were first generated from a comprehensive literature review. Face validity were conducted by presenting the drafted tool to ten experts on the subject matter. A validation study was conducted among doctors, pharmacists, nurses, pharmacy technicians, and the general public. The objectives of the study were to test the tool for content validity using the content validity index (CVI), construct validity using contrast group approach, difficulty index, readability, and reliability test using the test-retest method. We developed and validated a final tool containing thirty-three items. The tool was valid for face validity and had a scale-level (average) content validity (S-CVI/Ave) of 0.91. The ASV knowledge of pharmacists was higher than that of doctors, pharmacy technicians, nurses, and the general public (p 
  2. Bala AA, Malami S, Muhammad YA, Kurfi B, Raji I, Salisu SM, et al.
    Toxicon X, 2022 Jun;14:100122.
    PMID: 35402895 DOI: 10.1016/j.toxcx.2022.100122
    Snakebite envenoming (SBE) is a neglected public health problem, especially in Asia, Latin America and Africa. There is inadequate knowledge of venom toxicokinetics especially from African snakes. To mimic a likely scenario of a snakebite envenoming, we used an enzyme-linked immunosorbent assay (ELISA) approach to study the toxicokinetic parameters in rabbits, following a single intramuscular (IM) administration of Northern Nigeria Naja nigricollis venom. We used a developed and validated non-compartmental approach in the R package PK to determine the toxicokinetic parameters of the venom and subsequently used pharmacometrics modelling to predict the movement of the toxin within biological systems. We found that N. nigricollis venom contained sixteen venom protein families following a mass spectrometric analysis of the whole venom. Most of these proteins belong to the three-finger toxins family (3FTx) and venom phospholipase A2 (PLA2) with molecular weight ranging from 3 to 16 kDa. Other venom protein families were in small proportions with higher molecular weights. The N. nigricollis venom was rapidly absorbed at 0.5 h, increased after 1 h and continued to decrease until the 16th hour (Tmax), where maximum concentration (Cmax) was observed. This was followed by a decrease in concentration at the 32nd hour. The venom of N. nigricollis was found to have high volume of distribution (1250 ± 245 mL) and low clearance (29.0 ± 2.5 mL/h) with an elimination half-life of 29 h. The area under the curve (AUC) showed that the venom remaining in the plasma over 32 h was 0.0392 ± 0.0025 mg h.L-1, and the mean residence time was 43.17 ± 8.04 h. The pharmacometrics simulation suggests that the venom toxins were instantly and rapidly absorbed into the extravascular compartment and slowly moved into the central compartment. Our study demonstrates that Nigerian N. nigricollis venom contains low molecular weight toxins that are well absorbed into the blood and deep tissues. The venom could be detected in rabbit blood 48 h after intramuscular envenoming.
  3. Bala AA, Mohammed M, Umar S, Ungogo MA, Al-Kassim Hassan M, Abdussalam US, et al.
    Toxicon, 2023 Mar 01;224:107035.
    PMID: 36706926 DOI: 10.1016/j.toxicon.2023.107035
    The World Health Organization has listed Snakebite Envenoming (SBE) as a priority neglected tropical disease, with a worldwide annual snakebite affecting 5.4 million people and injuring 2.7 million lives. In many parts of rural areas of Africa and Asia, medicinal plants have been used as alternatives to conventional antisnake venom (ASV) due in part to inaccessibility to hospitals. Systemic reviews (SR) of laboratory-based preclinical studies play an essential role in drug discovery. We conducted an SR to evaluate the relationship between interventional medicinal plants and their observed effects on venom-induced experiments. This SR was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The Modified collaborative approach to meta-analysis and review of animal data from experimental studies (CAMARADES) and SYRCLE's risk of bias tools were used to appraise the included studies. Data were searched online in Medline via PubMed, Embase via OVID, and Scopus. Studies reporting in vivo and in vitro pharmacological activities of African medicinal plants/extracts/constituents against venom-induced pathologies were identified and included for screening. Data from the included studies were extracted and synthesized. Ten studies reported statistically significant percentage protection (40-100%) of animals against venom-induced lethality compared with control groups that received no medicinal plant intervention. Sixteen studies reported significant effects (p ≤ 0.05) against venom-induced pathologies compared with the control group; these include hemolytic, histopathologic, necrotic, and anti-enzymatic effects. The plant family Fabaceae has the highest number of studies reporting its efficacy, followed by Annonaceae, Malvaceae, Combretaceae, Sterculiaceae, and Olacaceae. Some African medicinal plants are preclinically effective against venom-induced lethality, hematotoxicity, and cytotoxicity. The evidence was extracted from three in vitro studies, nine in vivo studies, and five studies that combined both in vivo and in vitro models. The effective plants belong to the Fabaceae family, followed by Malvaceae, and Annonaceae.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links