Displaying all 2 publications

Abstract:
Sort:
  1. Hariharan M, Chee LS, Yaacob S
    J Med Syst, 2012 Jun;36(3):1309-15.
    PMID: 20844933 DOI: 10.1007/s10916-010-9591-z
    Acoustic analysis of infant cry signals has been proven to be an excellent tool in the area of automatic detection of pathological status of an infant. This paper investigates the application of parameter weighting for linear prediction cepstral coefficients (LPCCs) to provide the robust representation of infant cry signals. Three classes of infant cry signals were considered such as normal cry signals, cry signals from deaf babies and babies with asphyxia. A Probabilistic Neural Network (PNN) is suggested to classify the infant cry signals into normal and pathological cries. PNN is trained with different spread factor or smoothing parameter to obtain better classification accuracy. The experimental results demonstrate that the suggested features and classification algorithms give very promising classification accuracy of above 98% and it expounds that the suggested method can be used to help medical professionals for diagnosing pathological status of an infant from cry signals.
  2. Hariharan M, Chee LS, Ai OC, Yaacob S
    J Med Syst, 2012 Jun;36(3):1821-30.
    PMID: 21249515 DOI: 10.1007/s10916-010-9641-6
    The goal of this paper is to discuss and compare three feature extraction methods: Linear Predictive Coefficients (LPC), Linear Prediction Cepstral Coefficients (LPCC) and Weighted Linear Prediction Cepstral Coefficients (WLPCC) for recognizing the stuttered events. Speech samples from the University College London Archive of Stuttered Speech (UCLASS) were used for our analysis. The stuttered events were identified through manual segmentation and were used for feature extraction. Two simple classifiers namely, k-nearest neighbour (kNN) and Linear Discriminant Analysis (LDA) were employed for speech dysfluencies classification. Conventional validation method was used for testing the reliability of the classifier results. The study on the effect of different frame length, percentage of overlapping, value of ã in a first order pre-emphasizer and different order p were discussed. The speech dysfluencies classification accuracy was found to be improved by applying statistical normalization before feature extraction. The experimental investigation elucidated LPC, LPCC and WLPCC features can be used for identifying the stuttered events and WLPCC features slightly outperforms LPCC features and LPC features.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links