Diabetes mellitus is a group of metabolic disorders of the endocrine system characterised by hyperglycaemia. Type II diabetes mellitus (T2DM) constitutes the majority of diabetes cases around the world and are due to unhealthy diet, sedentary lifestyle, as well as rise of obesity in the population, which warrants the search for new preventive and treatment strategies. Improved comprehension of T2DM pathophysiology provided various new agents and approaches against T2DM including via nutritional and lifestyle interventions. Seaweeds are rich in dietary fibres, unsaturated fatty acids, and polyphenolic compounds. Many of these seaweed compositions have been reported to be beneficial to human health including in managing diabetes. In this review, we discussed the diversity of seaweed composition and bioactive compounds which are potentially useful in preventing or managing T2DM by targeting various pharmacologically relevant routes including inhibition of enzymes such as α-glucosidase, α-amylase, lipase, aldose reductase, protein tyrosine phosphatase 1B (PTP1B) and dipeptidyl-peptidase-4 (DPP-4). Other mechanisms of action identified, such as anti-inflammatory, induction of hepatic antioxidant enzymes' activities, stimulation of glucose transport and incretin hormones release, as well as β-cell cytoprotection, were also discussed by taking into consideration numerous in vitro, in vivo, and human studies involving seaweed and seaweed-derived agents.
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, has gradually emerged as a public health challenge worldwide. Carrageenan is a popular food additive that has been in use for decades. However, controversy exists regarding to the safety of carrageenan due to its exacerbation of colitis in experimental models. In this study, we studied the effects of vehicle and host intestinal microflora on carrageenan inflammatory properties in C57BL/6 J mice. We found that in high-fat diet model, native carrageenan in drinking water increased the disease activity index (DAI), myeloperoxidase (MPO) activity and the mRNA expression of TLR4 in colon, whereas carrageenan-supplemented diet has no visible effects. However, no signs of colitis were observed under low-fat diet regardless of the mode of vehicle used. Moreover, we discovered that carrageenan-induced colitis in high-fat diet model was robustly correlated with changes in the composition of gut microbiota, specifically Alistipes finegoldii and Bacteroides acidifaciens. Hence, we propose that the inflammatory property of carrageenan is influenced greatly by its intake form via modification of host intestinal microecology.
Kappaphycus is a commercially important edible red alga widely cultivated for carrageenan production. Here, we aimed to investigate the anti-obesity mechanism of Kappaphycusalvarezii by comparing the effects of whole seaweed (T), extracted native κ-carrageenan (CGN), and the leftover fraction sans-carrageenan (SCGN) supplementations (5%, w/w) on diet-induced obese C57BL/6J mice. A high-fat diet induced both a raised body fat percentage and serum cholesterol level, increased adipocytes size, abnormal levels of adipocytokines, and promoted gut dysbiosis. Our results showed that, overall, both CGN and SCGN were more effective in reversing obesity and related metabolic syndromes to normal levels than T. Furthermore, these findings suggested that CGN- and SCGN-modulated gut dysbiosis induced by a high-fat diet, which may play an influencing role in adiponectin dysregulation. Our data also showed some evidence that CGN and SCGN have distinct effects on selected genes involved in lipid metabolism. In conclusion, both κ-carrageenan and SCGN have novel anti-obesity potential with possible different mechanisms of action.