Displaying all 4 publications

Abstract:
Sort:
  1. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG, Faure D
    Int J Syst Evol Microbiol, 2019 Feb;69(2):470-475.
    PMID: 30601112 DOI: 10.1099/ijsem.0.003180
    Pectobacterium carotovorum M022T has been isolated from a waterfall source in Selangor district (Malaysia). Using genomic and phenotypic tests, we re-examined the taxonomical position of this strain. Based on 14 concatenated housekeeping genes (fusA, rpoD, rpoS, acnA, purA, gyrB, recA, mdh, mtlD, groEL, secY, glyA, gapA and rplB), multi-locus sequence analysis revealed that strain M022T falls into a novel clade separated from the other Pectobacterium species. The in silico DNA-DNA hybridization and average nucleotide identity values were lower than the 70 and 95 % threshold values, respectively. In addition, by combining genomic and phenotypic tests, strain M022T may be distinguished from the other Pectobacterium isolates by its incapacity to grow on d(+)-xylose, l-rhamnose, cellobiose and lactose. Strain M022T (=CFBP 8629T=LMG 30744T) is proposed as the type strain of the Pectobacteriumfontis sp. nov.
  2. Khayi S, Cigna J, Chong TM, Quêtu-Laurent A, Chan KG, Hélias V, et al.
    Int J Syst Evol Microbiol, 2016 Dec;66(12):5379-5383.
    PMID: 27692046 DOI: 10.1099/ijsem.0.001524
    Pectobacterium wasabiae was originally isolated from Japanese horseradish (Eutrema wasabi), but recently some Pectobacterium isolates collected from potato plants and tubers displaying blackleg and soft rot symptoms were also assigned to P. wasabiae. Here, combining genomic and phenotypical data, we re-evaluated their taxonomic position. PacBio and Illumina technologies were used to complete the genome sequences of P. wasabiae CFBP 3304T and RNS 08-42-1A. Multi-locus sequence analysis showed that the P. wasabiae strains RNS 08-42-1A, SCC3193, CFIA1002 and WPP163, which were collected from potato plant environment, constituted a separate clade from the original Japanese horseradish P. wasabiae. The taxonomic position of these strains was also supported by calculation of the in-silico DNA-DNA hybridization, genome average nucleotide indentity, alignment fraction and average nucleotide indentity values. In addition, they were phenotypically distinguished from P. wasabiae strains by producing acids from (+)-raffinose, α-d(+)-α-lactose, d(+)-galactose and (+)-melibiose but not from methyl α-d-glycopyranoside, (+)-maltose or malonic acid. The name Pectobacterium parmentieri sp. nov. is proposed for this taxon; the type strain is RNS 08-42-1AT (=CFBP 8475T=LMG 29774T).
  3. Oulghazi S, Pédron J, Cigna J, Lau YY, Moumni M, Van Gijsegem F, et al.
    Int J Syst Evol Microbiol, 2019 Aug;69(8):2440-2444.
    PMID: 31166160 DOI: 10.1099/ijsem.0.003497
    Strains 2B12T, FVG1-MFV-O17 and FVG10-MFV-A16 were isolated from fresh water samples collected in Asia and Europe. The nucleotide sequences of the gapA barcodes revealed that all three strains belonged to the same cluster within the genus Dickeya. Using 13 housekeeping genes (fusA, rpoD, rpoS, glyA, purA, groEL, gapA, rplB, leuS, recA, gyrB, infB and secY), multilocus sequence analysis confirmed the existence of a new clade. When the genome sequences of these three isolates and other Dickeya species were compared, the in silico DNA-DNA hybridization and average nucleotide identity values were found to be no more than 45.50 and 91.22 %, respectively. The closest relative species was Dickeya fangzhongdai. Genome comparisons also highlighted genetic traits differentiating the new strains from D. fangzhongdai strains DSM 101947T (=CFBP 8607T) and B16. Phenotypical tests were performed to distinguish the three strains from D. fangzhongdai and other Dickeya species. The name Dickeya undicola sp. nov. is proposed with strain 2B12T (=CFBP 8650T=LMG 30903T) as the type strain.
  4. Blin P, Robic K, Khayi S, Cigna J, Munier E, Dewaegeneire P, et al.
    Mol Ecol, 2021 01;30(2):608-624.
    PMID: 33226678 DOI: 10.1111/mec.15751
    Invasive pathogens can be a threat when they affect human health, food production or ecosystem services, by displacing resident species, and we need to understand the cause of their establishment. We studied the patterns and causes of the establishment of the pathogen Dickeya solani that recently invaded potato agrosystems in Europe by assessing its invasion dynamics and its competitive ability against the closely related resident D. dianthicola species. Epidemiological records over one decade in France revealed the establishment of D. solani and the maintenance of the resident D. dianthicola in potato fields exhibiting blackleg symptoms. Using experimentations, we showed that D. dianthicola caused a higher symptom incidence on aerial parts of potato plants than D. solani, while D. solani was more aggressive on tubers (i.e. with more severe symptoms). In co-infection assays, D. dianthicola outcompeted D. solani in aerial parts, while the two species co-existed in tubers. A comparison of 76 D. solani genomes (56 of which have been sequenced here) revealed balanced frequencies of two previously uncharacterized alleles, VfmBPro and VfmBSer , at the vfmB virulence gene. Experimental inoculations showed that the VfmBSer population was more aggressive on tubers, while the VfmBPro population outcompeted the VfmBSer population in stem lesions, suggesting an important role of the vfmB virulence gene in the ecology of the pathogens. This study thus brings novel insights allowing a better understanding of the pattern and causes of the D.solani invasion into potato production agrosystems, and the reasons why the endemic D. dianthicola nevertheless persisted.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links