Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.
Citalopram is the most potent selective serotonin reuptake inhibitor (SSRI) which is used as an antidepressant but causes sexual dysfunction. Whether citalopram induced sexual dysfunction is a result of gonadotropin-releasing hormone (GnRH), kisspeptin or RF-amide related peptide (RFRP) alteration is unknown. In this study, we tested mice for sexual behavior after vehicle (0.9% NaCl) and citalopram treatment (5 mg/kg) daily for 1 day (acute) and 21 or 28 days (chronic). Effects of acute and chronic treatments on neuronal numbers and mRNA expression of GnRH, kisspeptin and RFRP were measured. In addition, RFRP fiber projections to preoptic (POA)-GnRH neurons were analyzed using double-label immunohistochemistry. The expression of 14 different serotonin receptor types mRNA was examined in immunostained laser dissected single RFRP neurons in the dorsomedial hypothalamus (DMH), however only 11 receptors types were identified. Acute citalopram treatment did not affect sexual behavior, whereas, the total duration of intromission was reduced with chronic treatment. There was no effect in the expression of kisspeptin (neuronal numbers and mRNA) in the anteroventral periventricular nucleus and the arcuate nucleus and expression of GnRH (neuronal numbers and mRNA) in the POA after citalopram treatment. However, RFRP neuronal numbers in the DMH and fiber projections to the POA were significantly increased after chronic citalopram treatment, which suggests citalopram induced inhibition of sexual behavior involves the modulation of RFRP through serotonin receptors in the DMH.
RFamide-related peptide (RFRP)-3 reduces luteinising hormone (LH) secretion in rodents. Stress has been shown to upregulate the expression of the RFRP gene (Rfrp) with a concomitant reduction in LH secretion, but an effect on expression of the gonadotrophin-releasing hormone (GnRH) gene (Gnrh1) has not been shown. We hypothesised that lipopolysaccharide (LPS)-induced stress affects expression of Rfrp, the gene for kisspeptin (Kiss1) and/or Gnrh1, leading to suppression of LH levels in rats. Intracerebroventricular injections of RFRP-3 (0.1, 1, 5 nmol) or i.v. LPS (15μgkg-1) reduced LH levels. Doses of 1 and 5 nmol RFRP-3 were then administered to analyse gene expression by in situ hybridisation. RFRP-3 (5 nmol) had no effect on Gnrh1 or Kiss1 expression. LPS stress reduced GnRH and Kiss1 expression, without affecting Rfrp1 expression. These data indicate that LPS stress directly or indirectly reduces Gnrh1 expression, but this is unlikely to be due to a change in Rfrp1 expression.