Displaying all 2 publications

Abstract:
Sort:
  1. Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, et al.
    Plant Biotechnol J, 2016 Apr;14(4):1095-8.
    PMID: 26360509 DOI: 10.1111/pbi.12467
    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.
  2. Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, et al.
    Front Plant Sci, 2015;6:563.
    PMID: 26322050 DOI: 10.3389/fpls.2015.00563
    Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity. Genomics appears to be a promising tool for deciphering the stress responsiveness of crop species with adaptation traits or in wild relatives toward identifying underlying genes, alleles or quantitative trait loci. Molecular breeding approaches have proven helpful in enhancing the stress adaptation of crop plants, and recent advances in high-throughput sequencing and phenotyping platforms have transformed molecular breeding to genomics-assisted breeding (GAB). In view of this, the present review elaborates the progress and prospects of GAB for improving climate change resilience in crops, which is likely to play an ever increasing role in the effort to ensure global food security.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links