Displaying all 3 publications

Abstract:
Sort:
  1. Bishnoi P, Ng YZ, Wei H, Tan EC, Lunny DP, Wong XFCC, et al.
    Am J Med Genet A, 2021 02;185(2):625-630.
    PMID: 33258232 DOI: 10.1002/ajmg.a.61975
    Self-improving dystrophic epidermolysis bullosa is a rare subtype of dystrophic epidermolysis bullosa (DEB) characterized by significant improvement in skin fragility within the first few years of life. Genetic inheritance has previously been reported as autosomal dominant or recessive with both forms harboring mutations in COL7A1. To date, there have been no reports of this rare clinical entity from various Southeast Asian ethnicities. Here, we describe the clinical and molecular features of five patients from the Southeast Asia region who presented with predominantly acral-distributed blisters and erosions in the first few days of life. Blistering resolved over several months, without appearance of new blisters. By immunofluorescence, intraepidermal retention of Type VII collagen was observed in all patient skin biopsies when investigated with antibody staining. Genetic analysis of four patients revealed pathogenic variants in COL7A1 which have not been previously reported. The clinical diagnosis in these rare patients is confirmed with molecular histology and genetic characterization.
  2. Dore KM, Hansen MF, Klegarth AR, Fichtel C, Koch F, Springer A, et al.
    Primates, 2020 May;61(3):373-387.
    PMID: 31965380 DOI: 10.1007/s10329-020-00793-7
    Over the past 20 years, GPS collars have emerged as powerful tools for the study of nonhuman primate (hereafter, "primate") movement ecology. As the size and cost of GPS collars have decreased and performance has improved, it is timely to review the use and success of GPS collar deployments on primates to date. Here we compile data on deployments and performance of GPS collars by brand and examine how these relate to characteristics of the primate species and field contexts in which they were deployed. The compiled results of 179 GPS collar deployments across 17 species by 16 research teams show these technologies can provide advantages, particularly in adding to the quality, quantity, and temporal span of data collection. However, aspects of this technology still require substantial improvement in order to make deployment on many primate species pragmatic economically. In particular, current limitations regarding battery lifespan relative to collar weight, the efficacy of remote drop-off mechanisms, and the ability to remotely retrieve data need to be addressed before the technology is likely to be widely adopted. Moreover, despite the increasing utility of GPS collars in the field, they remain substantially more expensive than VHF collars and tracking via handheld GPS units, and cost considerations of GPS collars may limit sample sizes and thereby the strength of inferences. Still, the overall high quality and quantity of data obtained, combined with the reduced need for on-the-ground tracking by field personnel, may help defray the high equipment cost. We argue that primatologists armed with the information in this review have much to gain from the recent, substantial improvements in GPS collar technology.
  3. Dore KM, Hansen MF, Klegarth AR, Fichtel C, Koch F, Springer A, et al.
    Primates, 2020 05;61(3):389-390.
    PMID: 32026151 DOI: 10.1007/s10329-020-00800-x
    In the original publication of the article, figure 1 was wrongly published as a duplication.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links