Displaying all 3 publications

Abstract:
Sort:
  1. Campa D, Pastore M, Gentiluomo M, Talar-Wojnarowska R, Kupcinskas J, Malecka-Panas E, et al.
    Oncotarget, 2016 08 30;7(35):57011-57020.
    PMID: 27486979 DOI: 10.18632/oncotarget.10935
    The CDKN2A (p16) gene plays a key role in pancreatic cancer etiology. It is one of the most commonly somatically mutated genes in pancreatic cancer, rare germline mutations have been found to be associated with increased risk of developing familiar pancreatic cancer and CDKN2A promoter hyper-methylation has been suggested to play a critical role both in pancreatic cancer onset and prognosis. In addition several unrelated SNPs in the 9p21.3 region, that includes the CDNK2A, CDNK2B and the CDNK2B-AS1 genes, are associated with the development of cancer in various organs. However, association between the common genetic variability in this region and pancreatic cancer risk is not clearly understood. We sought to fill this gap in a case-control study genotyping 13 single nucleotide polymorphisms (SNPs) in 2,857 pancreatic ductal adenocarcinoma (PDAC) patients and 6,111 controls in the context of the Pancreatic Disease Research (PANDoRA) consortium. We found that the A allele of the rs3217992 SNP was associated with an increased pancreatic cancer risk (ORhet=1.14, 95% CI 1.01-1.27, p=0.026, ORhom=1.30, 95% CI 1.12-1.51, p=0.00049). This pleiotropic variant is reported to be a mir-SNP that, by changing the binding site of one or more miRNAs, could influence the normal cell cycle progression and in turn increase PDAC risk. In conclusion, we observed a novel association in a pleiotropic region that has been found to be of key relevance in the susceptibility to various types of cancer and diabetes suggesting that the CDKN2A/B locus could represent a genetic link between diabetes and pancreatic cancer risk.
  2. Campa D, Rizzato C, Stolzenberg-Solomon R, Pacetti P, Vodicka P, Cleary SP, et al.
    Int J Cancer, 2015 Nov 01;137(9):2175-83.
    PMID: 25940397 DOI: 10.1002/ijc.29590
    A small number of common susceptibility loci have been identified for pancreatic cancer, one of which is marked by rs401681 in the TERT-CLPTM1L gene region on chromosome 5p15.33. Because this region is characterized by low linkage disequilibrium, we sought to identify whether additional single nucleotide polymorphisms (SNPs) could be related to pancreatic cancer risk, independently of rs401681. We performed an in-depth analysis of genetic variability of the telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC) genes, in 5,550 subjects with pancreatic cancer and 7,585 controls from the PANcreatic Disease ReseArch (PANDoRA) and the PanScan consortia. We identified a significant association between a variant in TERT and pancreatic cancer risk (rs2853677, odds ratio = 0.85; 95% confidence interval = 0.80-0.90, p = 8.3 × 10(-8)). Additional analysis adjusting rs2853677 for rs401681 indicated that the two SNPs are independently associated with pancreatic cancer risk, as suggested by the low linkage disequilibrium between them (r(2) = 0.07, D' = 0.28). Three additional SNPs in TERT reached statistical significance after correction for multiple testing: rs2736100 (p = 3.0 × 10(-5) ), rs4583925 (p = 4.0 × 10(-5) ) and rs2735948 (p = 5.0 × 10(-5) ). In conclusion, we confirmed that the TERT locus is associated with pancreatic cancer risk, possibly through several independent variants.
  3. Zhang M, Wang Z, Obazee O, Jia J, Childs EJ, Hoskins J, et al.
    Oncotarget, 2016 Oct 11;7(41):66328-66343.
    PMID: 27579533 DOI: 10.18632/oncotarget.11041
    Genome-wide association studies (GWAS) have identified common pancreatic cancer susceptibility variants at 13 chromosomal loci in individuals of European descent. To identify new susceptibility variants, we performed imputation based on 1000 Genomes (1000G) Project data and association analysis using 5,107 case and 8,845 control subjects from 27 cohort and case-control studies that participated in the PanScan I-III GWAS. This analysis, in combination with a two-staged replication in an additional 6,076 case and 7,555 control subjects from the PANcreatic Disease ReseArch (PANDoRA) and Pancreatic Cancer Case-Control (PanC4) Consortia uncovered 3 new pancreatic cancer risk signals marked by single nucleotide polymorphisms (SNPs) rs2816938 at chromosome 1q32.1 (per allele odds ratio (OR) = 1.20, P = 4.88x10 -15), rs10094872 at 8q24.21 (OR = 1.15, P = 3.22x10 -9) and rs35226131 at 5p15.33 (OR = 0.71, P = 1.70x10 -8). These SNPs represent independent risk variants at previously identified pancreatic cancer risk loci on chr1q32.1 ( NR5A2), chr8q24.21 ( MYC) and chr5p15.33 ( CLPTM1L- TERT) as per analyses conditioned on previously reported susceptibility variants. We assessed expression of candidate genes at the three risk loci in histologically normal ( n = 10) and tumor ( n = 8) derived pancreatic tissue samples and observed a marked reduction of NR5A2 expression (chr1q32.1) in the tumors (fold change -7.6, P = 5.7x10 -8). This finding was validated in a second set of paired ( n = 20) histologically normal and tumor derived pancreatic tissue samples (average fold change for three NR5A2 isoforms -31.3 to -95.7, P = 7.5x10 -4-2.0x10 -3). Our study has identified new susceptibility variants independently conferring pancreatic cancer risk that merit functional follow-up to identify target genes and explain the underlying biology.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links