Displaying all 2 publications

Abstract:
Sort:
  1. Mahendran TR, Cynthia B, Thevendran R, Maheswaran S
    Mol Biotechnol, 2024 Aug 01.
    PMID: 39085563 DOI: 10.1007/s12033-024-01240-4
    The sudden global crisis of COVID-19, driven by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demands swift containment measures due to its rapid spread and numerous problematic mutations, which complicate the establishment of herd immunity. With escalating fatalities across various nations no foreseeable end in sight, there is a pressing need to create swiftly deployable, rapid, cost-effective detection, and treatment methods. While various steps are taken to mitigate the transmission and severity of the disease, vaccination is proven throughout mankind history as the best method to acquire immunity and circumvent the spread of infectious diseases. Nonetheless, relying solely on vaccination might not be adequate to match the relentless viral mutations observed in emerging variants of SARS-CoV-2, including alterations to their RBD domain, acquisition of escape mutations, and potential resistance to antibody binding. Beyond the immune system activation achieved through vaccination, it is crucial to develop new medications or treatment methods to either impede the infection or enhance existing treatment modalities. This review emphasizes innovative treatment strategies that aim to directly disrupt the virus's ability to replicate and spread, which could play a role in ending the SARS-CoV-2 pandemic.
  2. See-Too WS, Ambrose M, Malley R, Ee R, Mulcahy E, Manche E, et al.
    Int J Syst Evol Microbiol, 2019 Mar;69(3):645-651.
    PMID: 30676309 DOI: 10.1099/ijsem.0.003147
    Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399T (=LMG29626T=DSM103228T) and 7641 (=LMG29627=DSM103229), respectively. Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that 6399T and 7641 formed a distinct phylogenetic lineage within the genus Pandoraea. Genome sequence comparison analysis indicated that strains 6399T and 7641 are clonal and share 100 % similarity, however, similarity to other type strains (ANIb 73.2-88.8 %, ANIm 83.5-89.9 % and OrthoANI 83.2-89.3 %) indicates that 6399T and 7641 do not belong to any of the reported type species. The major cellular fatty acids of 6399T were C16 : 0 (32.1 %) C17 : 0cyclo (18.7 %) and C18 : 1ω7c (14.5 %), while Q-8 was the only respiratory quinone detected. The major polar lipids identified were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of 6399T was 62.9 (mol%). Strain 6399T can be differentiated from other members of Pandoraea by the absence of C19 : 0ω8c cyclo and by the presence of C17 : 0ω8c cyclo. Together our data show that the bacterial strains 6399T and 7641 represent a novel species of the genus Pandoraea, for which the name Pandoraea fibrosis sp. nov. is proposed (type strain 6399T).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links