Displaying all 2 publications

Abstract:
Sort:
  1. Pathan F, Zainal Abidin HA, Vo QH, Zhou H, D'Angelo T, Elen E, et al.
    Eur Heart J Cardiovasc Imaging, 2021 01 01;22(1):102-110.
    PMID: 31848575 DOI: 10.1093/ehjci/jez303
    AIMS: Left atrial (LA) strain is a prognostic biomarker with utility across a spectrum of acute and chronic cardiovascular pathologies. There are limited data on intervendor differences and no data on intermodality differences for LA strain. We sought to compare the intervendor and intermodality differences between transthoracic echocardiography (TTE) and cardiac magnetic resonance (CMR) derived LA strain. We hypothesized that various components of atrial strain would show good intervendor and intermodality correlation but that there would be systematic differences between vendors and modalities.

    METHODS AND RESULTS: We evaluated 54 subjects (43 patients with a clinical indication for CMR and 11 healthy volunteers) in a study comparing TTE- and CMR-derived LA reservoir strain (ƐR), conduit strain (ƐCD), and contractile strain (ƐCT). The LA strain components were evaluated using four dedicated types of post-processing software. We evaluated the correlation and systematic bias between modalities and within each modality. Intervendor and intermodality correlation was: ƐR [intraclass correlation coefficient (ICC 0.64-0.90)], ƐCD (ICC 0.62-0.89), and ƐCT (ICC 0.58-0.77). There was evidence of systematic bias between vendors and modalities with mean differences ranging from (3.1-12.2%) for ƐR, ƐCD (1.6-8.6%), and ƐCT (0.3-3.6%). Reproducibility analysis revealed intraobserver coefficient of variance (COV) of 6.5-14.6% and interobserver COV of 9.9-18.7%.

    CONCLUSION: Vendor derived ƐR, ƐCD, and ƐCT demonstrates modest to excellent intervendor and intermodality correlation depending on strain component examined. There are systematic differences in measurements depending on modality and vendor. These differences may be addressed by future studies, which, examine calibration of LA geometry/higher frame rate imaging, semi-quantitative approaches, and improvements in reproducibility.

  2. Haslbauer JD, Lindner S, Valbuena-Lopez S, Zainal H, Zhou H, D'Angelo T, et al.
    Int J Cardiol, 2019 Jan 15;275:179-186.
    PMID: 30360992 DOI: 10.1016/j.ijcard.2018.10.023
    BACKGROUND: Cancer-related treatment is associated with development of heart failure and poor outcome in cancer-survivors. T1 and T2 mapping by cardiovascular magnetic resonance (CMR) may detect myocardial injury due to cancer-related treatment.

    METHODS: Patients receiving cancer-related treatment regimes underwent screening of cardiac involvement with CMR, either within 3 months (early Tx) or >12 months (late Tx) post-treatment. T1 and T2 mapping, cardiac function, strain, ischaemia-testing, scar-imaging and serological cardiac biomarkers were obtained.

    RESULTS: Compared to age/gender matched controls (n = 57), patients (n = 115, age (yrs): median(IQR) 48(28-60), females, n = 60(52%) had reduced left ventricular ejection fraction (LV-EF) and strain, and higher native T1 and T2. The early Tx group (n = 52) had significantly higher native T1, T2 and troponin levels compared to the late Tx group, indicating myocardial inflammation and oedema (p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links