The vitamin E component of palm oil provides a rich source of tocotrienols which have been shown previously to be growth inhibitory to two human breast cancer cell lines: responsive MCF7 cells and unresponsive MDA-MB-231 cells. Data presented here shows that the tocotrienol-rich fraction (TRF) of palm oil and individual fractions (alpha, gamma and delta) can also inhibit the growth of another responsive human breast cancer cell line, ZR-75-1. At low concentrations in the absence of oestrogen tocotrienols stimulated growth of the ZR-75-1 cells, but at higher concentrations in the presence as well as in the absence of oestradiol, tocotrienols inhibited cell growth strongly. As for MCF7 cells, alpha-tocopherol had no effect on growth of the ZR-75-1 cells in either the absence or presence of oestradiol. In studying the effects of tocotrienols in combination with antioestrogens, it was found that TRF could further inhibit growth of ZR-75-1 cells in the presence of tamoxifen (10(-7) M and 10(-8) M). Individual tocotrienol fractions (alpha, gamma, delta) could inhibit growth of ZR-75-1 cells in the presence of 10(-8) M oestradiol and 10(-8) M pure antioestrogen ICI 164,384. The immature mouse uterine weight bioassay confirmed that TRF could not exert oestrogen antagonist action in vivo. These results provide evidence of wider growth-inhibitory effects of tocotrienols beyond MCF7 and MDA-MB-231 cells, and with an oestrogen-independent mechanism of action, suggest a possible clinical advantage in combining administration of tocotrienols with antioestrogen therapy.
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.