Displaying all 2 publications

Abstract:
Sort:
  1. Tan TT, Demura T, Ohtani M
    Plant Biotechnol (Tokyo), 2019;36(1):1-6.
    PMID: 31275042 DOI: 10.5511/plantbiotechnology.18.1119b
    Xylem is an essential conductive tissue in vascular plants, and secondary cell wall polymers found in xylem vessel elements, such as cellulose, hemicellulose, and lignin, are promising sustainable bioresources. Thus, understanding the molecular mechanisms underlying xylem vessel element differentiation is an important step towards increasing woody biomass and crop yields. Establishing in vitro induction systems, in which vessel element differentiation is induced by phytohormonal stimuli or by overexpression of specific transcription factors, has been vital to this research. In this review, we present an overview of these in vitro induction systems, and describe two recently developed in vitro induction systems, VISUAL (Vascular cell Induction culture System Using Arabidopsis Leaves) and the KDB system. Furthermore, we discuss the potentials and limitations of each of these new in vitro induction systems for advancing our understanding of the molecular mechanisms driving xylem vessel element differentiation.
  2. Saelim L, Akiyoshi N, Tan TT, Ihara A, Yamaguchi M, Hirano K, et al.
    J Plant Res, 2019 Jan;132(1):117-129.
    PMID: 30478480 DOI: 10.1007/s10265-018-1074-1
    The cell wall determines morphology and the environmental responses of plant cells. The primary cell wall (PCW) is produced during cell division and expansion, determining the cell shape and volume. After cell expansion, specific types of plant cells produce a lignified wall, known as a secondary cell wall (SCW). We functionally analyzed Group IIId Arabidopsis AP2/EREBP genes, namely ERF34, ERF35, ERF38, and ERF39, which are homologs of a rice ERF gene previously proposed to be related to SCW biosynthesis. Expression analysis revealed that these four genes are expressed in regions related to cell division and/or cell differentiation in seedlings (i.e., shoot apical meristems, the primordia of leaves and lateral roots, trichomes, and central cylinder of primary roots) and flowers (i.e., vascular tissues of floral organs and replums and/or valve margins of pistils). Overexpression of ERF genes significantly upregulated PCW-type, but not SCW-type, CESA genes encoding cellulose synthase catalytic subunits in Arabidopsis seedlings. Transient co-expression reporter analysis indicated that ERF35, ERF38, and ERF39 possess transcriptional activator activity, and that ERF34, ERF35, ERF38, and ERF39 upregulated the promoter activity of CESA1, a PCW-type CESA gene, through the DRECRTCOREAT elements, the core cis-acting elements known to be recognized by AP2/ERF proteins. Together, our findings show that Group IIId ERF genes are positive transcriptional regulators of PCW-type CESA genes in Arabidopsis and are possibly involved in modulating cellulose biosynthesis in response to developmental requirements and environmental stimuli.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links