Generation of high-producing clones is a perquisite for achieving recombinant protein yields suitable for biopharmaceutical production. However, in many industrially important cell lines used to produce recombinant proteins such as Chinese hamster ovary, mouse myeloma line (NS0), and hybridomas, only a minority of clones show significantly above-average productivity. Thus, in order to have a reasonable probability of finding rare high-producing clones, a large number of clones need to be screened. Limiting dilution cloning is the most commonly used method, owing to its relative simplicity and low cost. However the use of liquid media in this method makes the selection of monoclonal hybridoma and transfectoma colonies to be labor intensive and time consuming, thus significantly limiting the number of clones that can be feasibly screened. Hence, we describe the use of semisolid media to immobilize clones and a high-throughput, automated colony picker (ClonePix FL) to efficiently isolate monoclonal high-producing clones secreting monoclonal antibodies.
From our recent publications, it was found that the deimmunization method (Dharshanan et al. (2012) Sci Res Essays 7:2288-2299) should be applied for the development of humanized anti-C2 monoclonal antibody (H1C2 mAb). However, the overlapping-PCR mutagenesis procedure used to insert the variable regions into cloning vectors was laborious and time-consuming. Additionally, the expression of H1C2 mAb in NS0 cells was low in static culture vessels. Therefore H1C2 mAb was redeveloped by deimmunization method with the following modifications in order to optimize the production of H1C2 mAb. First, instead of the overlapping-PCR mutagenesis procedure, synthetic DNA coding the variable regions were used to express the mAb. Second, two expression vectors, pFUSE and UCOE, were used to express H1C2 mAb in NS0 cells and CHO cells in order to investigate the combination that gave the highest number of high producing stable clones. This will provide the highest chance of finding clones with the requisite high productivity and stability required for manufacturing. We found that transfection of UCOE in CHO cells generated the highest number of high producing stable clones. To our knowledge, this is the first time that H1C2 mAb has been expressed in CHO cells.