Intensive aquaculture causes a decline in the health status of fish, resulting in an increased disease incidence. To counteract this, feed additives have been utilized to improve the growth performance and health of aquaculture species. This work specifically investigates the impact of powdered Ficus deltoidea (FD) on various parameters related to growth, blood parameters, liver and intestine morphology, body proximate analysis, digestive enzymes, antioxidant capacity, and disease resistance to motile Aeromonad Septicemia (MAS) caused by Aeromonas hydrophila infection in African catfish, Clarias gariepinus. Four formulated diets were prepared: T1 (0% FD), T2 (0.5% FD), T3 (0.75% FD), and T4 (1% FD). After 8 weeks, the African catfish's growth performance fed with the T2 diet exhibited a substantial improvement (p < 0.05), along with a remarkably lower (p < 0.05) feed conversion ratio (FCR) when compared to the other treatment groups. Blood parameter analysis revealed notably higher (p < 0.05) levels of white blood cell (WBC), lymphocytosis (LYM), hemoglobin (HGB), albumin (ALB), globulin (GLOB), as well as total protein (TP) in the T2 diet group. While all treatment groups displayed normal intestinal morphology, liver deterioration was observed in groups supplemented with higher FD. The T2 diet group recorded the highest villus length, width, and crypt depth. Protease and lipase levels were also notably improved in the T2 diet group compared to other treatment groups. Additionally, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were remarkably elevated in all FD diet groups than in the control group. The expression of immune-related genes, including transforming growth factor beta 1, heat shock protein 90, nuclear factor kappa-B gene, and lysozyme G, was upregulated in all treatments. Overall, the results of this study indicate that incorporating dietary FD at 0.5% concentration in the diet of African catfish may enhance their productivity in intensive farming.
Sex reversal of male to female is a characteristic of barramundi (Lates calcarifer), which is affected by several factors, thereby changing the broodstock population. A study was conducted in floating cages in Langkawi, Malaysia, to determine the weight point at the onset of the sex reversal phenomena. A total of 75 female and 55 male adult individuals (3-4 weeks of age) were sampled from the fish cultured in cages to ascertain their sex at different weights. The water temperature and salinity values were 29.82 °C and 33.12 ppt, respectively. The specimens were classified into twelve bodyweight classes (2.00-8.00 ± 0.5 kg intervals). Female specimen body weight distribution was highest in the 6.01-6.50 kg class (22.6%), followed by the 5.51-6.00 kg and 4.51-5.00 class (13.3%), while male specimen body weight distribution was highest in the 4.51-5.00 kg class (32.1%), followed by the 4.01-4.50 kg class (30.3%). Length-to-weight relationships for females and males of Asian Seabass indicated positive allometric growth. The correlation between body weight and GSI, using Pearson's correlation, for both sexes, for the male and female barramundi, there was a weak correlation between body weight and GSI, which was 37 and 30%, respectively. Based on the present study's findings, it can be concluded that sex reversal from male to female in Barramundi largely occurred at 4.57 kg body weight and 66.8 cm total length.