Displaying all 2 publications

Abstract:
Sort:
  1. Toulah FH, El-Aswad BEW, Harba NM, Naguib YM
    Trop Biomed, 2018 Dec 01;35(4):893-907.
    PMID: 33601839
    High-fat diet (HFD) can cause hyperlipidemia, fatty liver and cardiovascular disorders. Herein, we evaluated therapeutic effects and possible underlying mechanisms of actions of Schistosoma mansoni soluble egg antigen (SEA) against experimental HFD induced dyslipidemia, hepatic and cardiovascular pathology. Forty Swiss albino mice were divided into four groups (10 each); mice fed standard diet (SD), mice fed HFD, mice fed HFD for 8 weeks then infected by S. mansoni cercaria (HFD+I) and mice fed HFD for 8 weeks then treated with SEA (HFD+SEA), all mice were euthanized 16 weeks after starting the experiment. HFD+SEA mice showed significantly (p<0.001) reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), and significantly (p<0.05) increased high-density lipoprotein cholesterol (HDL-C) comparing to HFD mice with non-significant difference with HFD+I mice group. Doppler flowmetry showed significantly (p<0.01) lower arterial resistance and significantly (p<0.05) higher blood flow velocity in HFD+SEA and HFD+I mice groups than HFD mice. HFD+SEA mice revealed improving in liver and aortic pathology and these were better than HFD+I mice group. HFD+SEA and HFD+I mice groups had less myocardium lipid deposits, but still showing some congested blood vessels. HFD myocardium revealed strong CD34+ expression on immunohistochemistry study, while that of HFD+SEA showed weak and HFD+I mice had moderate expressions. HFD+SEA mice had significantly (p<0.01) lower serum IL-1β and vascular endothelial growth factor (VEGF) and significantly (p<0.001) higher serum transforming growth factor beta 1 (TGF-β1) and IL-10 than HFD mice with non-significant difference with HFD+I mice. In conclusion, SEA lowered serum lipids, improved aortic function, decreased liver and cardiovascular pathology in HFD mice, so, it is recommended to purify active molecules from SEA to develop anti-dyslipidemic treatment.
  2. El-Aswad BEW, Ammar AI, Mahmoud SF, Soliman SS, Abd El-Atty AF
    Trop Biomed, 2020 Mar 01;37(1):75-88.
    PMID: 33612720
    The course of Trichinella (T.) spiralis infection includes intestinal and muscle phases. The aims of this work were to evaluate IL-23 and cyclooxygenase-2 (COX-2) by immunohistochemistry in the muscles of T. spiralis infected mice in a time-course study and to correlate their level with the serum levels of IL-23, IFN-γ, IL-4 and IL-10 cytokines. The mice were divided into an un-infected control group (UC) (10 mice) and 5 infected mouse groups (each 10 mice/group. Each mouse was infected with 200 T. spiralis larvae) and sacrificed on days 7, 14, 21, 28 and 35 post-infection (dpi). IL-23 showed weak expression (+1) on the 21st dpi, then it became moderately expressed (+2) on the 28th dpi and on day 35 pi, the immunoreactivity was strong (+3). COX-2 expressed weakly on 14 dpi, while the other mouse groups (21, 28 and 35) showed strong (+3) expression. IL-23 serum concentrations increased gradually in a significant pattern, in comparison to that of UC mice, from the 21st dpi to the end of the experiment. IFN-γ increased gradually and was significantly higher than those of UC mice from the 7th dpi, reached its maximum level on the 21st dpi, after which it decreased non-significantly. IL-4 up-regulated significantly in all infected groups in comparison to UC mice achieving its highest level on the 21st dpi and decreased after that. IL-10 increased significantly on the 7th dpi, but dropped at the 14th dpi, then reached its peak on the 21st dpi, and decreased again on the 28th and 35th dpi. In conclusion, T. spiralis infection caused increased expression of IL-23 and COX-2 in the muscle of infected mice, the effect being strongest on the 35th day. Also, the infection induced a mixed Th1/Th2 profile with a predominance of Th2 at the early muscle phase, after which the immune repose became mainly Th2.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links