Displaying all 2 publications

Abstract:
Sort:
  1. Balasubramaniam S, Kapoor R, Yeow JH, Lim PG, Flanagan S, Ellard S, et al.
    J Pediatr Endocrinol Metab, 2011;24(7-8):573-7.
    PMID: 21932603
    Hyperinsulinism-hyperammonemia syndrome (HI/HA) (OMIM 606762), the second most common form of congenital hyperinsulinism (CHI) is associated with activating missense mutations in the GLUD1 gene, which encodes the mitochondrial matrix enzyme, glutamate dehydrogenase (GDH). Patients present with recurrent symptomatic postprandial hypoglycemia following protein-rich meals (leucine-sensitive hypoglycemia) as well as fasting hypoglycemia accompanied by asymptomatic elevations of plasma ammonia. In contrast to other forms of CHI, the phenotype is reported to be milder thus escaping recognition for the first few months of life. Early diagnosis and appropriate management are essential to avoid the neurodevelopmental consequences including epilepsy and learning disabilities which are prevalent in this disorder. We report an infant presenting with afebrile seizures secondary to hyperinsulinemic hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene.
  2. Laver TW, Wakeling MN, Hua JHY, Houghton JAL, Hussain K, Ellard S, et al.
    Clin Endocrinol (Oxf), 2018 Nov;89(5):621-627.
    PMID: 30238501 DOI: 10.1111/cen.13841
    OBJECTIVE: Hyperinsulinaemic hypoglycaemia (HH) can occur in isolation or more rarely feature as part of a syndrome. Screening for mutations in the "syndromic" HH genes is guided by phenotype with genetic testing used to confirm the clinical diagnosis. As HH can be the presenting feature of a syndrome, it is possible that mutations will be missed as these genes are not routinely screened in all newly diagnosed individuals. We investigated the frequency of pathogenic variants in syndromic genes in infants with HH who had not been clinically diagnosed with a syndromic disorder at referral for genetic testing.

    DESIGN: We used genome sequencing data to assess the prevalence of mutations in syndromic HH genes in an international cohort of patients with HH of unknown genetic cause.

    PATIENTS: We undertook genome sequencing in 82 infants with HH without a clinical diagnosis of a known syndrome at referral for genetic testing.

    MEASUREMENTS: Within this cohort, we searched for the genetic aetiologies causing 20 different syndromes where HH had been reported as a feature.

    RESULTS: We identified a pathogenic KMT2D variant in a patient with HH diagnosed at birth, confirming a genetic diagnosis of Kabuki syndrome. Clinical data received following the identification of the mutation highlighted additional features consistent with the genetic diagnosis. Pathogenic variants were not identified in the remainder of the cohort.

    CONCLUSIONS: Pathogenic variants in the syndromic HH genes are rare; thus, routine testing of these genes by molecular genetics laboratories is unlikely to be justified in patients without syndromic phenotypes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links