MATERIALS AND METHODS: We identified differentially expressed mitochondrial proteins in 50 infertile men with varicocele and in 10 fertile controls by secondary liquid chromatography-tandem mass spectroscopy data driven in silico analysis. Identified proteins were validated by Western blot and immunofluorescence. Seminal oxidation-reduction potential was measured.
RESULTS: We identified 22 differentially expressed proteins related to mitochondrial structure (LETM1, EFHC, MIC60, PGAM5, ISOC2 and import TOM22) and function (NDFSU1, UQCRC2 and COX5B, and the core enzymes of carbohydrate and lipid metabolism). Cluster analysis and 3-dimensional principal component analysis revealed a significant difference between the groups. All proteins studied were under expressed in infertile men with varicocele. Liquid chromatography-tandem mass spectroscopy data were corroborated by Western blot and immunofluorescence. Impaired mitochondrial function was associated with decreased expression of the proteins (ATPase1A4, HSPA2, SPA17 and APOA1) responsible for proper sperm function, concomitant with elevated seminal oxidation-reduction potential in the semen of infertile patients with varicocele.
CONCLUSIONS: Impaired mitochondrial structure and function in varicocele may lead to oxidative stress, reduced ATP synthesis and sperm dysfunction. Mitochondrial differentially expressed proteins should be explored for the development of biomarkers as a predictor of infertility in patients with varicocele. Antioxidant therapy targeting sperm mitochondria may help improve the fertility status of these patients.
Objective: In this case-control study, the suitability of germinal vesicle transfer (GVT), synchronous ooplasmic transfer (sOT), asynchronous ooplasmic transfer using cryopreserved MII oocyte (caOT), and asynchronous ooplasmic transfer using waste MII oocyte (waOT) for maturation of the human-aged non-surrounded nucleolus germinal vesicle-stage (NSN-GV) oocyte were investigated.
Materials and Methods: NSN-GV oocytes were subjected to four methods: group A (GVT), B (sOT), C (caOT) D (waOT), and E (Control). The fusion rates, MI, MII, ICSI observations and cleavage at 2-cell, 4-cell, and 8-cell stages were compared in the groups.
Results: In GVT, none of the oocytes fused. In sOT, all oocytes fused, 20 achieved the MI, 14 progressed to MII, 8 fertilized, 6 cleaved and 5, 4, and 3 achieved the 2-cells, 4-cells and 8-cells, respectively. In caOT, all oocytes fused and achieved the MI, 8 progressed to MII and fertilized, 6 cleaved and 6, 5, and 5 achieved the 2-cells, 4-cells, and 8-cells respectively. In waOT, all oocytes fused, 5 and 3 progressed to MI and MII, respectively, but only one fertilized, cleaved and reached a 4-cells stage. In group E, 6 and 2 oocytes progressed to MI and MII, respectively, and only one fertilized but arrested at the zygote stage. caOT had the highest survival rate when compared to sOT (p = 0.04), waOT (p = 0.002), and control (p = 0.001).
Conclusion: The caOT method was beneficial over sOT, waOT, and GVT in supplementing the developmental capacity of human-aged NSN-GV oocytes.