Displaying all 3 publications

Abstract:
Sort:
  1. Kunde MN, Barlow A, Klittich AM, Yakupova A, Patel RP, Fickel J, et al.
    Ecol Evol, 2023 Apr;13(4):e9969.
    PMID: 37082317 DOI: 10.1002/ece3.9969
    The sun bear Helarctos malayanus is one of the most endangered ursids, and to date classification of sun bear populations has been based almost exclusively on geographic distribution and morphology. The very few molecular studies focussing on this species were limited in geographic scope. Using archival and non-invasively collected sample material, we have added a substantial number of complete or near-complete mitochondrial genome sequences from sun bears of several range countries of the species' distribution. We here report 32 new mitogenome sequences representing sun bears from Cambodia, Thailand, Peninsular Malaysia, Sumatra, and Borneo. Reconstruction of phylogenetic relationships revealed two matrilines that diverged ~295 thousand years ago: one restricted to portions of mainland Indochina (China, Cambodia, Thailand; "Mainland clade"), and one comprising bears from Borneo, Sumatra, Peninsular Malaysia but also Thailand ("Sunda clade"). Generally recent coalescence times in the mitochondrial phylogeny suggest that recent or historical demographic processes have resulted in a loss of mtDNA variation. Additionally, analysis of our data in conjunction with shorter mtDNA sequences revealed that the Bornean sun bear, classified as a distinct subspecies (H. m. euryspilus), does not harbor a distinctive matriline. Further molecular studies of H. malayanus are needed, which should ideally include data from nuclear loci.
  2. Patel RP, Förster DW, Kitchener AC, Rayan MD, Mohamed SW, Werner L, et al.
    R Soc Open Sci, 2016 Oct;3(10):160350.
    PMID: 27853549
    Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis.
  3. Martins RF, Fickel J, Le M, van Nguyen T, Nguyen HM, Timmins R, et al.
    BMC Evol. Biol., 2017 01 26;17(1):34.
    PMID: 28122497 DOI: 10.1186/s12862-017-0888-0
    BACKGROUND: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia.

    RESULTS: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum.

    CONCLUSIONS: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links