Various psychological feelings that commuters might experience due to the shortcomings of a public transport are a major concern for transport policy makers. Those shortcomings would be translated into various negative psychological feelings, which would consequently tarnish the perceived quality of the public transport system in terms of its characteristics, e.g., the perceived quality of the passengers' information system (PIS). A delay has often been defined as the difference between the real arrival of a transport and the scheduled arrival of based on the PIS. The main question this study seeks to answer is how passengers view the PIS while undergoing various psychological negative impacts due to delay? This is especially important when the PIS is not precise. Previous studies on the importance of real-time information mainly focus on the impact of PIS on the satisfaction of commuters, or the reliability of the public transport. However, they rarely consider the negative psychological impacts that delays might have on commuters, and how those negative feelings might be aggravated by providing inaccurate information for the commuters. The proposed study is based on completed questionnaires by 396 passengers waiting for a rail transport in Malaysia; the rail transport was experiencing frequent long delays due to various mechanical malfunctions. In addition, the PIS provided for the passengers were mainly imprecise, and was updated regularly. The relationship between various considered variables, and a related latent factor, were formed by means of factor analysis. The results of internal consistency and validity highlight acceptable factors to be considered for a structural equation modeling (SEM) model. Three latent factors were found to impact the latent factor of PIS. For instance, it was found that the relationship between motion sickness factor and the response of PIS is not by a direct relationship between those two factors, but through the mediation of a latent physiological factor. On the other hand, the impact of the psychological feelings of the commuter by PIS is higher than its physiological effects. The results of this study have an important managerial implication for policy makers that even if the delay is inevitable, an accurate PIS could be provided to reduce the associated negative feelings of delay. Extensive discussion has been had about identification of a best fit model and process of model's parameters' estimation.
Graft-versus-leukemia (GvL) reactions are responsible for the effectiveness of allogeneic hematopoietic cell transplantation as a treatment modality for myeloid neoplasia, whereby donor T- effector cells recognize leukemia neoantigens. However, a substantial fraction of patients experiences relapses because of the failure of the immunological responses to control leukemic outgrowth. Here, through a broad immunogenetic study, we demonstrate that germline and somatic reduction of human leucocyte antigen (HLA) heterogeneity enhances the risk of leukemic recurrence. We show that preexistent germline-encoded low evolutionary divergence of class II HLA genotypes constitutes an independent factor associated with disease relapse and that acquisition of clonal somatic defects in HLA alleles may lead to escape from GvL control. Both class I and II HLA genes are targeted by somatic mutations as clonal selection factors potentially impairing cellular immune responses and response to immunomodulatory strategies. These findings define key molecular modes of post-transplant leukemia escape contributing to relapse.
Graft-versus-leukemia (GvL) reactions are responsible for the effectiveness of allogeneic hematopoietic cell transplantation as a treatment modality for myeloid neoplasia, whereby donor T- effector cells recognize leukemia neoantigens. However, a substantial fraction of patients experience relapses because of the failure of the immunological responses to control leukemic outgrowth. Here, through a broad immunogenetic study, we demonstrate that germline and somatic reduction of human leucocyte antigen (HLA) heterogeneity enhances the risk of leukemic recurrence. We show that preexistent germline-encoded low evolutionary divergence of class II HLA genotypes constitutes an independent factor associated with disease relapse and that acquisition of clonal somatic defects in HLA alleles may lead to escape from GvL control. Both class I and II HLA genes are targeted by somatic mutations as clonal selection factors potentially impairing cellular immune reactions and response to immunomodulatory strategies. These findings define key molecular modes of post-transplant leukemia escape contributing to relapse.