Displaying all 2 publications

Abstract:
Sort:
  1. Seufert P, Fiedler K
    Oecologia, 1996 Apr;106(1):127-136.
    PMID: 28307164 DOI: 10.1007/BF00334414
    In Peninsular Malaysia ten species of lycaenid butterflies use leaf flushes or inflorescences of the legume tree Saraca thaipingensis as larval hostplant. Resource partitioning among these species is regulated by a complex mixture of patterns of interaction with ants. Females of obligately myrmecophilous species lay their eggs exclusively on trees colonized by their specific host ants. On trees colonized by weaver ants, only specialist mutualists adapted to these territorial ants are able to survive, while larvae of other species are killed. The formicine ant Cladomyrma petalae, which inhabits hollow twigs of the myrmecophytic hostplant, likewise precludes oviposition by female butterflies. Lycaenid larvae confronted with this ant species never survive, but one concealed feeding species (Jamides caeruleus) escapes removal due to the cryptic life-habits of the larvae. Two facultative myrmecophiles associate in a mutualistic way with a wide and largely overlapping range of ant genera which forage at the extrafloral nectaries of leaf flushes. One species (Cheritra freja) is not myrmecophilous, but is tolerated by all but the most territorial ants. Ant-dependent hostplant selection and egg-clustering characterize the obligate mutualists, whereas facultative myrmecophiles and the non-myrmecophile distribute their eggs singly over appropriate hostplants. Signals mediating caterpillar-ant communication are highly specialized in one obligate myrmecophile (Drupadia theda), but rather unspecific in four other species tested. Altogether our observations indicate that colonization and establishment of lycaenid butterflies on S. thaipingensis trees are governed by specializations as well as opportunistic use of resources (ants and hostplant parts). Therefore, the diversity of this species assemblage is maintained by deterministic as well as stochastic factors.
  2. Colwell RK, Gotelli NJ, Ashton LA, Beck J, Brehm G, Fayle TM, et al.
    Ecol Lett, 2016 09;19(9):1009-22.
    PMID: 27358193 DOI: 10.1111/ele.12640
    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links