Recent advances in neuroimaging have allowed the detection and characterization of focal malformations of cortical developmental in a significant proportion of patients with epilepsy, many of whom were previously labelled as cryptogenic, allowing a better description of the associated electroencephalogram (EEG) features. Alpha activity is usually preserved, although superficial gyral abnormalities are often associated with overlying localized polymorphic delta activity, and occasionally abnormal fast activity. Most affected patients with epilepsy show interictal spikes. These are often broadly concordant with the structural abnormality but may show a wider anatomic distribution and be multifocal, or occasionally appear only in anatomically distant sites. In many patients the spikes are frequent and sometimes they occur continuously or in long trains. EEG findings are often stable over time, but some patients only show the development of slow wave changes or interictal spikes when followed serially for several years. A small proportion of patients with focal malformations of cortical development have EEG features mimicking idiopathic generalized epilepsy, and occasionally patients exhibit continuous generalized spike and slow wave activity in sleep. Electrocorticography studies confirm the often widespread nature of interictal spiking, but may also show highly epileptogenic patterns recorded directly from dysplastic cortex. The intrinsic epileptogenicity of areas of cortical developmental abnormalities has also been demonstrated by chronic intracranial studies and in vitro recordings of slices obtained from resected human dysplastic cortex. In this regard such developmental abnormalities are fundamentally different from acquired lesions such as tumors/vascular anomalies that usually exert their effects through changes in adjacent cortex.
Video-EEG telemetry is often used to support the diagnosis of non-epileptic seizures (NES). Although rare, some patients may have both epileptic seizures (ES) and NES. It is crucially important to identify such patients to avoid the hazards of inappropriate anticonvulsant withdrawal. To delineate the electroclinical characteristics and diagnostic problems in this group of patients, we studied the clinical, EEG and MRI features of 14 consecutive patients in whom separate attacks, considered to be both NES and ES were recorded using video-EEG telemetry. Only two patients were drug-reduced during the telemetry. Most patients had their first seizure (ES or NES) in childhood (median age 7 years; range: 6 months-24 years); 8/14 patients were female. Brain MRI was abnormal in 10/14 patients. Interictal EEG abnormalities were present in all patients; 13/14 had epileptiform and 1/14 only background abnormalities. Over 70 seizures were recorded in these 14 patients: in 12/14 patients, the first recorded seizure was a NES (p < 0.001), and 7 of these patients had at least one more NES before an ES was recorded. Only 3/14 patients had more than 5 NES before an ES was recorded. Recording a small number of apparently NES in an individual by no means precludes the possibility of additional epilepsy. Particular care should be taken, and multiple (> 5) seizure recording may be advisable, in patients with a young age of seizure onset, interictal EEG abnormalities, or a clear, potential aetiology for epilepsy.
Three novel insect-specific flaviviruses, isolated from mosquitoes collected in Peru, Malaysia (Sarawak), and the United States, are characterized. The new viruses, designated La Tina, Kampung Karu, and Long Pine Key, respectively, are antigenically and phylogenetically more similar to the mosquito-borne flavivirus pathogens, than to the classical insect-specific viruses like cell fusing agent and Culex flavivirus. The potential implications of this relationship and the possible uses of these and other arbovirus-related insect-specific flaviviruses are reviewed.