RESULTS: A total of four single-guide RNAs (sgRNAs) were designed in silico based on the genomic sequences of EgFAD2 and EgPAT. Using robust plant CRISPR/Cas9 vector technology, multiple sgRNA expression cassettes were efficiently constructed into a single-binary CRISPR/Cas9 vector to edit the EgFAD2 and EgPAT genes. Each of the constructed transformation vectors was then delivered into oil palm embryogenic calli using the biolistic, Agrobacterium-mediated, and PEG-mediated protoplast transformation methods. Sequence analysis of PCR products from 15 samples confirmed that mutations were introduced at four target sites of the oil palm EgFAD2 and EgPAT genes. Single- and double-knockout mutants of both genes were generated, with large and small deletions within the targeted regions. Mutations found at EgFAD2 and EgPAT target sites indicate that the Cas9/sgRNA genome-editing system effectively knocked out both genes in oil palm.
CONCLUSION: This technology is the first in oil palm to use CRISPR/Cas9 genome-editing to target high-oleic-associated genes. These findings showed that multiplex genome-editing in oil palm could be achieved using multiple sgRNAs. Targeted mutations detected establish that the CRISPR/Cas9 technology offers a great potential for oil palm.