Objective: To investigate effect of photobiomodulation (PBM) on nerve regeneration after neurotization with the Oberlin Procedure (ulnar fascicle to motor branch to biceps) to restore elbow flexion in patients with brachial plexus injury. Materials and methods: This prospective randomized controlled trial was conducted with 14 patients with high brachial plexus injury who underwent neurotization with the Oberlin Procedure to restore elbow flexion. The patients were randomly allocated to two groups of equal numbers: control group and PBM group. In this study, the PBM used has a wavelength of 808 nm, 50 mW power, continuous mode emission, 4 J/cm2 dosimetry, administered daily for 10 consecutive days, with an interval of 2 days (weekends). The outcome of surgery was assessed after 1, 2, 3, and 6 months. The nonparametric Mann-Whitney U-test and chi-square test were utilized to compare the results between both groups. Results: After 3 months postoperatively, more patients in the PBM group had demonstrated signs of reinnervation and the mean muscle power was significantly higher in the PBM group. No adverse effects resulted from the administration of PBM. Conclusions: PBM is a treatment modality that can improve nerve regeneration after neurotization with the Oberlin Procedure.
Over the past decade, concerns over microplastic pollution in the marine ecosystem has increasingly gained more attention, but research investigating the ingestion of microplastics by marine fish in Malaysia is still regrettably lacking. This study investigated the microplastic presence, abundance, and morphological types within the guts of four species of commercial marine fish (Atule mate, Crenimugil seheli, Sardinella fimbriata and Rastrelliger brachysoma) caught in seawater off the coast of Malaysia's Northwest Peninsular. A total of 72 individual commercial marine fish guts from four species (fish per species n = 18) were examined. Remarkably, this study found that 100% of the samples contained microplastics. A total number of 432 microplastics (size < 5 mm) from the four species were found in the excised marine fish guts. The most common type of microplastic discovered was fragment, which accounted for 49.5% of all microplastics present. The gut microplastic content differed between species. Sardinella fimbriata recorded the greatest amount of microplastic ingestion, with an average microplastic count of 6.5 (±4.3) items per individual fish. However, there were no statistically significant differences found when comparing study species and different locations. SEM-EDX analysis confirmed the presence of microplastic particles by identifying the chemical elements found in the samples. Since the four studied species of commercial marine fish are popular protein sources in Malaysians' daily diet, this study suggests potential microplastic exposure to humans via contaminated fish consumption in Malaysia, which was previously unknown. Based on previous scientific evidence, this study also demonstrates the high probability of microplastic ingestion in marine fish in the Malaysian seawater, which could have an adverse effect on fish health as well as marine biota.