A feeding study was conducted to investigate how fish protein hydrolysate (FPH) supplementation affected the growth, feed utilization, body composition, and hematology of juvenile giant trevally (Caranx ignobilis Forsskal, 1775). Seven isonitrogenous (52% protein) and isocaloric diets (10% lipid) were formulated, wherein shrimp hydrolysate (SH) and tuna hydrolysate (TH) were used to replace fishmeal at inclusion levels of 0 (control), 30, 60, and 90 g/kg and labeled as control, SH30, SH60, SH90, TH30, TH60, and TH90, respectively. Each diet was fed to triplicate groups of juvenile giant trevally for 8 weeks. The results showed higher final body weight and specific growth rate in fish fed SH30, SH60, TH30, and TH60 than fed control diet. No difference was observed in feed intake, but reduced feed conversion ratio (FCR) was found in fish fed SH30, SH60, TH30, and TH60, demonstrating these diets improved feed utilization. TH90 caused deposition of lipid droplet in the hepatocyte, a sign of liver damage. Total monounsaturated fatty acids, polyunsaturated fatty acids (PUFA), and highly unsaturated fatty acids in fish were not affected by FPH supplementation. Fish fed TH30 showed lower ∑n - 3 PUFA than the fish fed remaining dietary treatments. The elevated serum protein was seen in fish fed control, SH30, SH60, and TH30, demonstrating that these diets were beneficial for the innate immune response in giant trevally. The results indicate that TH and SH could be incorporated into diets of giant trevally at 30-60 g/kg, replacing 7%-13% fishmeal with enhanced growth and health benefits.
The present study aims to evaluate the effect of liquid fish protein hydrolysate (FPH) following fishmeal substitution with full-fat and defatted BSF (black soldier fly, Hermetia illucens) meal in the feeds of juvenile ornate spiny lobster, Panulirus ornatus. The physiological aspects of juvenile lobsters including growth, fatty acids profile, and histopathology were observed. Six isoenergetic experimental feeds having a protein-to-energy ratio of 26 CP mg kJ-1 were formulated with the substitution of fishmeal at 25% using liquid FPH, full-fat BSF (FBSF), defatted BSF (DBSF), and their combination. The specific growth rate, final body weight, final total length, and length increment of juvenile lobsters (initial weight was 0.21 ± 0.01 g and total length was 20.53 ± 0.12 mm) were significantly affected by the fishmeal substitution (P < 0.05) and improved with the addition of liquid FPH in the feeds containing FBSF and DBSF. The whole body proximate analysis showed that the liquid FPH to the feeds containing DBSF increased the ash and protein content significantly (P < 0.05). The total monounsaturated fatty acids (∑MUFA), saturated fatty acids (∑SFA), and omega 9 fatty acids (∑n-9 FA) of juvenile lobsters' whole bodies fed with dietary DBSF and FPH supplementation were significantly higher than those of others (P < 0.05). The histopathological analysis indicated that the villus size and the muscle thickness in the intestine were not significantly affected by FPH supplementation. However, the hepatopancreas histopathology indicated the presence of B-cells and R-cells in the juvenile lobsters fed with FPH-supplemented feeds. The present results suggested the supplementation of liquid FPH to the formulated feed with FBSF and DBSF for juvenile lobsters can improve the lobsters' growth and fatty acids availability.