Displaying all 2 publications

Abstract:
Sort:
  1. Lim E, Salamonsen RF, Mansouri M, Gaddum N, Mason DG, Timms DL, et al.
    Artif Organs, 2015 Feb;39(2):E24-35.
    PMID: 25345482 DOI: 10.1111/aor.12370
    The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT.
  2. Pierot L, Jarayaman M, Szikora I, Hirsch J, Baxter B, Miyachi S, et al.
    Can J Neurol Sci, 2019 05;46(3):269-274.
    PMID: 30890199 DOI: 10.1017/cjn.2019.1
    After five positive randomized controlled trials showed benefit of mechanical thrombectomy in the management of acute ischemic stroke with emergent large-vessel occlusion, a multi-society meeting was organized during the 17th Congress of the World Federation of Interventional and Therapeutic Neuroradiology in October 2017 in Budapest, Hungary. This multi-society meeting was dedicated to establish standards of practice in acute ischemic stroke intervention aiming for a consensus on the minimum requirements for centers providing such treatment. In an ideal situation, all patients would be treated at a center offering a full spectrum of neuroendovascular care (a level 1 center). However, for geographical reasons, some patients are unable to reach such a center in a reasonable period of time. With this in mind, the group paid special attention to define recommendations on the prerequisites of organizing stroke centers providing medical thrombectomy for acute ischemic stroke, but not for other neurovascular diseases (level 2 centers). Finally, some centers will have a stroke unit and offer intravenous thrombolysis, but not any endovascular stroke therapy (level 3 centers). Together, these level 1, 2, and 3 centers form a complete stroke system of care. The multi-society group provides recommendations and a framework for the development of medical thrombectomy services worldwide.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links