The current study investigated whether ambient heat augments the inflammatory and postexercise hepcidin response in women and if menstrual phase and/or self-pacing modulate these physiological effects. Eight trained females (age: 37 ± 7 yr; V̇o2max: 46 ± 7 mL·kg-1·min-1; peak power output: 4.5 ± 0.8 W·kg-1) underwent 20 min of fixed-intensity cycling (100 W and 125 W) followed by a 30-min work trial (∼75% V̇o2max) in a moderate (MOD: 20 ± 1°C, 53 ± 8% relative humidity) and warm-humid (WARM: 32 ± 0°C, 75 ± 3% relative humidity) environment in both their early follicular (days 5 ± 2) and midluteal (days 21 ± 3) phases. Mean power output was 5 ± 4 W higher in MOD than in WARM (P = 0.02) such that the difference in core temperature rise was limited between environments (-0.29 ± 0.18°C in MOD, P < 0.01). IL-6 and hepcidin both increased postexercise (198% and 38%, respectively); however, neither was affected by ambient temperature or menstrual phase (all P > 0.15). Multiple regression analysis demonstrated that the IL-6 response to exercise was explained by leukocyte and platelet count (r2 = 0.72, P < 0.01), and the hepcidin response to exercise was explained by serum iron and ferritin (r2 = 0.62, P < 0.01). During exercise, participants almost matched their fluid loss (0.48 ± 0.18 kg·h-1) with water intake (0.35 ± 0.15 L·h-1) such that changes in body mass (-0.3 ± 0.3%) and serum osmolality (0.5 ± 2.0 osmol·kgH2O-1) were minimal or negligible, indicating a behavioral fluid-regulatory response. These results indicate that trained, iron-sufficient women suffer no detriment to their iron regulation in response to exercise with acute ambient heat stress or between menstrual phases on account of a performance-physiological trade-off.
Measurement error(s) of exercise tests for women are severely lacking in the literature. The purpose of this investigation was to 1) determine whether ovulatory status or ambient environment were moderating variables when completing a 30-min self-paced work trial and 2) provide test-retest norms specific to athletic women. A retrospective analysis of three heat stress studies was completed using 33 female participants (31 ± 9 yr, 54 ± 10 mL·min-1·kg-1) that yielded 130 separate trials. Participants were classified as ovulatory (n = 19), anovulatory (n = 4), and oral contraceptive pill users (n = 10). Participants completed trials ∼2 wk apart in their (quasi-) early follicular and midluteal phases in two of moderate (1.3 ± 0.1 kPa, 20.5 ± 0.5°C, 18 trials), warm-dry (2.2 ± 0.2 kPa, 34.1 ± 0.2°C, 46 trials), or warm-humid (3.4 ± 0.1 kPa, 30.2 ± 1.1°C, 66 trials) environments. We quantified reliability using limits of agreement, intraclass correlation coefficient (ICC), standard error of measurement (SEM), and coefficient of variation (CV). Test-retest reliability was high, clinically valid (ICC = 0.90, P < 0.01), and acceptable with a mean CV of 4.7%, SEM of 3.8 kJ (2.1 W), and reliable bias of -2.1 kJ (-1.2 W). The various ovulatory status and contrasting ambient conditions had no appreciable effect on reliability. These results indicate that athletic women can perform 30-min self-paced work trials ∼2 wk apart with an acceptable and low variability irrespective of their hormonal status or heat-stressful environments.NEW & NOTEWORTHY This study highlights that aerobically trained women perform 30-min self-paced work trials ∼2 wk apart with acceptably low variability and their hormonal/ovulatory status and the introduction of greater ambient heat and humidity do not moderate this measurement error.