This policy statement, which is the sixth of a series of documents prepared by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP) Professional Development Committee, gives guidance on how medical physicists in AFOMP countries should conduct themselves in an ethical manner in their professional practice (Ng et al. in Australas Phys Eng Sci Med 32:175-179, 2009; Round et al. in Australas Phys Eng Sci Med 33:7-10, 2010; Round et al. in Australas Phys Eng Sci Med 34:303-307, 2011; Round et al. in Australas Phys Eng Sci Med 35:393-398, 2012; Round et al. in Australas Phys Eng Sci Med 38:217-221, 2015). It was developed after the ethics policies and codes of conducts of several medical physics societies and other professional organisations were studied. The policy was adopted at the Annual General Meeting of AFOMP held in Jaipur, India, in November 2017.
Foregut fermentation is well known to occur in a wide range of mammalian species and in a single bird species. Yet, the foregut microbial community of free-ranging, foregut-fermenting monkeys, that is, colobines, has not been investigated so far. We analysed the foregut microbiomes in four free-ranging proboscis monkeys (Nasalis larvatus) from two different tropical habitats with varying plant diversity (mangrove and riverine forests), in an individual from a semi-free-ranging setting with supplemental feeding, and in an individual from captivity, using high-throughput sequencing based on 16S ribosomal RNA genes. We found a decrease in foregut microbial diversity from a diverse natural habitat (riverine forest) to a low diverse natural habitat (mangrove forest), to human-related environments. Of a total of 2700 bacterial operational taxonomic units (OTUs) detected in all environments, only 153 OTUs were shared across all individuals, suggesting that they were not influenced by diet or habitat. These OTUs were dominated by Firmicutes and Proteobacteria. The relative abundance of the habitat-specific microbial communities showed a wide range of differences among living environments, although such bacterial communities appeared to be dominated by Firmicutes and Bacteroidetes, suggesting that those phyla are key to understanding the adaptive strategy in proboscis monkeys living in different habitats.
A dose audit of 16 facilities in 11 countries has been performed within the framework of the Forum for Nuclear Cooperation in Asia (FNCA) quality assurance program. The quality of radiation dosimetry varies because of the large variation in radiation therapy among the participating countries. One of the most important aspects of international multicentre clinical trials is uniformity of absolute dose between centres. The National Institute of Radiological Sciences (NIRS) in Japan has conducted a dose audit of participating countries since 2006 by using radiophotoluminescent glass dosimeters (RGDs). RGDs have been successfully applied to a domestic postal dose audit in Japan. The authors used the same audit system to perform a dose audit of the FNCA countries. The average and standard deviation of the relative deviation between the measured and intended dose among 46 beams was 0.4% and 1.5% (k = 1), respectively. This is an excellent level of uniformity for the multicountry data. However, of the 46 beams measured, a single beam exceeded the permitted tolerance level of ±5%. We investigated the cause for this and solved the problem. This event highlights the importance of external audits in radiation therapy.
3D image-guided brachytherapy (3D-IGBT) has become a standard therapy for cervical cancer. However, the use of 3D-IGBT is limited in East and Southeast Asia. This study aimed to clarify the current usage patterns of 3D-IGBT for cervical cancer in East and Southeast Asia. A questionnaire-based survey was performed in 11 countries within the framework of the Forum for Nuclear Cooperation in Asia. The questionnaire collected the treatment information of patients with cervical cancer who underwent 3D-IGBT. The cumulative external beam radiotherapy and 3D-IGBT doses were summarized and normalized to a biological equivalent dose of 2 Gy per fraction (EQD2) using a linear-quadratic model. Of the 11 institutions representing the participating countries, six (55%) responded to the questionnaire. Overall, data of 36 patients were collected from the six institutions. Twenty-one patients underwent whole-pelvic irradiation and 15 underwent whole-pelvic irradiation with central shielding. Patients received a median of four treatment sessions of 3D-IGBT (range, 2-6). All 3D-IGBT sessions were computed tomography (CT)-based and not magnetic resonance image-based. The median doses to the high-risk clinical target volume D90, bladder D2cc, rectum D2cc and sigmoid colon D2cc were 80.9 Gy EQD2 (range, 58.9-105.9), 77.7 Gy EQD2 (range, 56.9-99.1), 68.0 Gy EQD2 (range, 48.6-90.7) and 62.0 Gy EQD2 (range, 39.6-83.7), respectively. This study elucidated the current patterns of 3D-IGBT for the treatment of cervical cancer in East and Southeast Asia. The results indicate the feasibility of observational studies of CT-based 3D-IGBT for cervical cancer in these countries.