Displaying all 2 publications

Abstract:
Sort:
  1. Loh HW, Ooi CP, Oh SL, Barua PD, Tan YR, Molinari F, et al.
    Comput Methods Programs Biomed, 2023 Nov;241:107775.
    PMID: 37651817 DOI: 10.1016/j.cmpb.2023.107775
    BACKGROUND AND OBJECTIVE: Attention Deficit Hyperactivity problem (ADHD) is a common neurodevelopment problem in children and adolescents that can lead to long-term challenges in life outcomes if left untreated. Also, ADHD is frequently associated with Conduct Disorder (CD), and multiple research have found similarities in clinical signs and behavioral symptoms between both diseases, making differentiation between ADHD, ADHD comorbid with CD (ADHD+CD), and CD a subjective diagnosis. Therefore, the goal of this pilot study is to create the first explainable deep learning (DL) model for objective ECG-based ADHD/CD diagnosis as having an objective biomarker may improve diagnostic accuracy.

    METHODS: The dataset used in this study consist of ECG data collected from 45 ADHD, 62 ADHD+CD, and 16 CD patients at the Child Guidance Clinic in Singapore. The ECG data were segmented into 2 s epochs and directly used to train our 1-dimensional (1D) convolutional neural network (CNN) model.

    RESULTS: The proposed model yielded 96.04% classification accuracy, 96.26% precision, 95.99% sensitivity, and 96.11% F1-score. The Gradient-weighted class activation mapping (Grad-CAM) function was also used to highlight the important ECG characteristics at specific time points that most impact the classification score.

    CONCLUSION: In addition to achieving model performance results with our suggested DL method, Grad-CAM's implementation also offers vital temporal data that clinicians and other mental healthcare professionals can use to make wise medical judgments. We hope that by conducting this pilot study, we will be able to encourage larger-scale research with a larger biosignal dataset. Hence allowing biosignal-based computer-aided diagnostic (CAD) tools to be implemented in healthcare and ambulatory settings, as ECG can be easily obtained via wearable devices such as smartwatches.

  2. Levis B, Bhandari PM, Neupane D, Fan S, Sun Y, He C, et al.
    JAMA Netw Open, 2024 Nov 04;7(11):e2429630.
    PMID: 39576645 DOI: 10.1001/jamanetworkopen.2024.29630
    IMPORTANCE: Test accuracy studies often use small datasets to simultaneously select an optimal cutoff score that maximizes test accuracy and generate accuracy estimates.

    OBJECTIVE: To evaluate the degree to which using data-driven methods to simultaneously select an optimal Patient Health Questionnaire-9 (PHQ-9) cutoff score and estimate accuracy yields (1) optimal cutoff scores that differ from the population-level optimal cutoff score and (2) biased accuracy estimates.

    DESIGN, SETTING, AND PARTICIPANTS: This study used cross-sectional data from an existing individual participant data meta-analysis (IPDMA) database on PHQ-9 screening accuracy to represent a hypothetical population. Studies in the IPDMA database compared participant PHQ-9 scores with a major depression classification. From the IPDMA population, 1000 studies of 100, 200, 500, and 1000 participants each were resampled.

    MAIN OUTCOMES AND MEASURES: For the full IPDMA population and each simulated study, an optimal cutoff score was selected by maximizing the Youden index. Accuracy estimates for optimal cutoff scores in simulated studies were compared with accuracy in the full population.

    RESULTS: The IPDMA database included 100 primary studies with 44 503 participants (4541 [10%] cases of major depression). The population-level optimal cutoff score was 8 or higher. Optimal cutoff scores in simulated studies ranged from 2 or higher to 21 or higher in samples of 100 participants and 5 or higher to 11 or higher in samples of 1000 participants. The percentage of simulated studies that identified the true optimal cutoff score of 8 or higher was 17% for samples of 100 participants and 33% for samples of 1000 participants. Compared with estimates for a cutoff score of 8 or higher in the population, sensitivity was overestimated by 6.4 (95% CI, 5.7-7.1) percentage points in samples of 100 participants, 4.9 (95% CI, 4.3-5.5) percentage points in samples of 200 participants, 2.2 (95% CI, 1.8-2.6) percentage points in samples of 500 participants, and 1.8 (95% CI, 1.5-2.1) percentage points in samples of 1000 participants. Specificity was within 1 percentage point across sample sizes.

    CONCLUSIONS AND RELEVANCE: This study of cross-sectional data found that optimal cutoff scores and accuracy estimates differed substantially from population values when data-driven methods were used to simultaneously identify an optimal cutoff score and estimate accuracy. Users of diagnostic accuracy evidence should evaluate studies of accuracy with caution and ensure that cutoff score recommendations are based on adequately powered research or well-conducted meta-analyses.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links