Displaying all 3 publications

Abstract:
Sort:
  1. Ghareghani M, Ghanbari A, Eid A, Shaito A, Mohamed W, Mondello S, et al.
    Transl Neurosci, 2021 Jan 01;12(1):164-189.
    PMID: 34046214 DOI: 10.1515/tnsci-2020-0169
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which activated immune cells attack the CNS and cause inflammation and demyelination. While the etiology of MS is still largely unknown, the interaction between hormones and the immune system plays a role in disease progression, but the mechanisms by which this occurs are incompletely understood. Several in vitro and in vivo experimental, but also clinical studies, have addressed the possible role of the endocrine system in susceptibility and severity of autoimmune diseases. Although there are several demyelinating models, experimental autoimmune encephalomyelitis (EAE) is the oldest and most commonly used model for MS in laboratory animals which enables researchers to translate their findings from EAE into human. Evidences imply that there is great heterogeneity in the susceptibility to the induction, the method of induction, and the response to various immunological or pharmacological interventions, which led to conflicting results on the role of specific hormones in the EAE model. In this review, we address the role of endocrine system in EAE model to provide a comprehensive view and a better understanding of the interactions between the endocrine and the immune systems in various models of EAE, to open up a ground for further detailed studies in this field by considering and comparing the results and models used in previous studies.
  2. Haddadi SA, Hu S, Ghaderi S, Ghanbari A, Ahmadipour M, Pung SY, et al.
    ACS Appl Mater Interfaces, 2021 Sep 08;13(35):42074-42093.
    PMID: 34428889 DOI: 10.1021/acsami.1c13055
    MXene sheets, as new 2D nanomaterials, have been used in many advanced applications due to their superior thin-layered architecture, as well as their capability to be employed as novel nanocontainers for advanced applications. In this research, intercalated Ti3C2 MXene sheets were synthesized through an etching method, and then they were modified with 3-aminopropyltriethoxysilane (APTES). Cerium cations (Ce3+) as an eco-friendly corrosion inhibitor were encapsulated within Ti3C2 MXene sheets to fabricate novel self-healing epoxy nanocomposite coatings. The corrosion protection performance (CPP) of Ce3+-doped Ti3C2 MXene nanosheets (Ti3C2 MXene-Ce3+) in a 3.5 wt % sodium chloride (NaCl) solution was studied on bare mild steel substrates using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The self-healing CPP of epoxy coatings loaded with 1 wt % undoped and doped Ti3C2 MXene was evaluated using EIS, salt spray, and field emission scanning electron microscopy (FE-SEM) techniques. The introduction of Ti3C2 MXene-Ce3+ into the corrosive solution and artificially scribed epoxy coating enhanced the total impedance from 717 to 6596 Ω cm2 and 8876 to 32092 Ω cm2, respectively, after 24 h of immersion compared to the control samples.
  3. Ghanbari A, Zibara K, Salari S, Ghareghani M, Rad P, Mohamed W, et al.
    CNS Neurol Disord Drug Targets, 2018;17(7):528-538.
    PMID: 29968547 DOI: 10.2174/1871527317666180703111643
    BACKGROUND & OBJECTIVE: The adolescent brain has a higher vulnerability to alcoholinduced neurotoxicity, compared to adult's brain. Most studies have investigated the effect of ethanol consumption on the body, however, methanol consumption, which peaked in the last years, is still poorly explored.

    METHOD: In this study, we investigated the effects of methanol neurotoxicity on memory function and pathological outcomes in the hippocampus of adolescent rats and examined the efficacy of Light- Emitting Diode (LED) therapy. Methanol induced neurotoxic rats showed a significant decrease in the latency period, in comparison to controls, which was significantly improved in LED treated rats at 7, 14 and 28 days, indicating recovery of memory function. In addition, methanol neurotoxicity in hippocampus caused a significant increase in cell death (caspase3+ cells) and cell edema at 7 and 28 days, which were significantly decreased by LED therapy. Furthermore, the number of glial fibrillary acid protein astrocytes was significantly lower in methanol rats, compared to controls, whereas LED treatment caused their significant increase. Finally, methanol neurotoxicity caused a significant decrease in the number of brain-derived neurotrophic factor (BDNF+) cells, but also circulating serum BDNF, at 7 and 28 days, compared to controls, which were significantly increased by LED therapy. Importantly, LED significantly increased the number of Ki-67+ cells and BDNF levels in the serum and hypothalamus in control-LED rats, compared to controls without LED therapy.

    CONCLUSION: In conclusion, chronic methanol administration caused severe memory impairments and several pathological outcomes in the hippocampus of adolescent rats which were improved by LED therapy.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links