Displaying all 2 publications

Abstract:
Sort:
  1. Chung FF, Maldonado SG, Nemc A, Bouaoun L, Cahais V, Cuenin C, et al.
    Clin Epigenetics, 2023 Jun 12;15(1):102.
    PMID: 37309009 DOI: 10.1186/s13148-023-01509-6
    BACKGROUND: Epigenetic alterations are a near-universal feature of human malignancy and have been detected in malignant cells as well as in easily accessible specimens such as blood and urine. These findings offer promising applications in cancer detection, subtyping, and treatment monitoring. However, much of the current evidence is based on findings in retrospective studies and may reflect epigenetic patterns that have already been influenced by the onset of the disease.

    METHODS: Studying breast cancer, we established genome-scale DNA methylation profiles of prospectively collected buffy coat samples (n = 702) from a case-control study nested within the EPIC-Heidelberg cohort using reduced representation bisulphite sequencing (RRBS).

    RESULTS: We observed cancer-specific DNA methylation events in buffy coat samples. Increased DNA methylation in genomic regions associated with SURF6 and REXO1/CTB31O20.3 was linked to the length of time to diagnosis in the prospectively collected buffy coat DNA from individuals who subsequently developed breast cancer. Using machine learning methods, we piloted a DNA methylation-based classifier that predicted case-control status in a held-out validation set with 76.5% accuracy, in some cases up to 15 years before clinical diagnosis of the disease.

    CONCLUSIONS: Taken together, our findings suggest a model of gradual accumulation of cancer-associated DNA methylation patterns in peripheral blood, which may be detected long before clinical manifestation of cancer. Such changes may provide useful markers for risk stratification and, ultimately, personalized cancer prevention.

  2. Ambatipudi S, Cuenin C, Hernandez-Vargas H, Ghantous A, Le Calvez-Kelm F, Kaaks R, et al.
    Epigenomics, 2016 May;8(5):599-618.
    PMID: 26864933 DOI: 10.2217/epi-2016-0001
    AIM: Epigenetic changes may occur in response to environmental stressors, and an altered epigenome pattern may represent a stable signature of environmental exposure.

    MATERIALS & METHODS: Here, we examined the potential of DNA methylation changes in 910 prediagnostic peripheral blood samples as a marker of exposure to tobacco smoke in a large multinational cohort.

    RESULTS: We identified 748 CpG sites that were differentially methylated between smokers and nonsmokers, among which we identified novel regionally clustered CpGs associated with active smoking. Importantly, we found a marked reversibility of methylation changes after smoking cessation, although specific genes remained differentially methylated up to 22 years after cessation.

    CONCLUSION: Our study has comprehensively cataloged the smoking-associated DNA methylation alterations and showed that these alterations are reversible after smoking cessation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links