Displaying all 2 publications

Abstract:
Sort:
  1. Mohammadzadeh N, Gholamzadeh M, Saeedi S, Rezayi S
    J Ambient Intell Humaniz Comput, 2023;14(5):6027-6041.
    PMID: 33224305 DOI: 10.1007/s12652-020-02656-x
    Wearable smart sensors are emerging technology for daily monitoring of vital signs with the reducing discomfort and interference with normal human activities. The main objective of this study was to review the applied wearable smart sensors for disease control and vital signs monitoring in epidemics outbreaks. A comprehensive search was conducted in Web of Science, Scopus, IEEE Library, PubMed and Google Scholar databases to identify relevant studies published until June 2, 2020. Main extracted specifications for each paper are publication details, type of sensor, disease, type of monitored vital sign, function and usage. Of 277 articles, 11 studies were eligible for criteria. 36% of papers were published in 2020. Articles were published in 10 different journals and only in the Journal of Medical Systems more than one article was published. Most sensors were used to monitor body temperature, heart rate and blood pressure. Wearable devices (like a helmet, watch, or cuff) and body area network sensors were popular types which can be used monitoring vital signs for epidemic trending. 65% of total papers (n = 6) were conducted by the USA, Malaysia and India. Applying appropriate technological solutions could improve control and management of epidemic disease as well as the application of sensors for continuous monitoring of vital signs. However, further studies are needed to investigate the real effects of these sensors and their effectiveness.
  2. Ahmadi H, Gholamzadeh M, Shahmoradi L, Nilashi M, Rashvand P
    Comput Methods Programs Biomed, 2018 Jul;161:145-172.
    PMID: 29852957 DOI: 10.1016/j.cmpb.2018.04.013
    BACKGROUND AND OBJECTIVE: Diagnosis as the initial step of medical practice, is one of the most important parts of complicated clinical decision making which is usually accompanied with the degree of ambiguity and uncertainty. Since uncertainty is the inseparable nature of medicine, fuzzy logic methods have been used as one of the best methods to decrease this ambiguity. Recently, several kinds of literature have been published related to fuzzy logic methods in a wide range of medical aspects in terms of diagnosis. However, in this context there are a few review articles that have been published which belong to almost ten years ago. Hence, we conducted a systematic review to determine the contribution of utilizing fuzzy logic methods in disease diagnosis in different medical practices.

    METHODS: Eight scientific databases are selected as an appropriate database and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method was employed as the basis method for conducting this systematic and meta-analysis review. Regarding the main objective of this research, some inclusion and exclusion criteria were considered to limit our investigation. To achieve a structured meta-analysis, all eligible articles were classified based on authors, publication year, journals or conferences, applied fuzzy methods, main objectives of the research, problems and research gaps, tools utilized to model the fuzzy system, medical disciplines, sample sizes, the inputs and outputs of the system, findings, results and finally the impact of applied fuzzy methods to improve diagnosis. Then, we analyzed the results obtained from these classifications to indicate the effect of fuzzy methods in decreasing the complexity of diagnosis.

    RESULTS: Consequently, the result of this study approved the effectiveness of applying different fuzzy methods in diseases diagnosis process, presenting new insights for researchers about what kind of diseases which have been more focused. This will help to determine the diagnostic aspects of medical disciplines that are being neglected.

    CONCLUSIONS: Overall, this systematic review provides an appropriate platform for further research by identifying the research needs in the domain of disease diagnosis.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links