Displaying all 2 publications

Abstract:
Sort:
  1. Jamil NA, Gray SR, Fraser WD, Fielding S, Macdonald HM
    Osteoporos Int, 2017 04;28(4):1433-1443.
    PMID: 28083666 DOI: 10.1007/s00198-016-3901-3
    The current study examined the relationship between vitamin D status and muscle strength in young healthy adults: residents (>6 months) and newcomers (0-3 months), originally from sunny climate countries but currently living in the northeast of Scotland. Our longitudinal data found a positive, albeit small, relationship between vitamin D status and knee extensor isometric strength.

    INTRODUCTION: Vitamin D has been suggested to play a role in muscle health and function, but studies so far have been primarily in older populations for falls prevention and subsequent risk of fractures.

    METHODS: Vitamin D status was assessed in a healthy young adults from sunny climate countries (n = 71, aged 19-42 years) with 56% seen within 3 months of arriving in Aberdeen [newcomers; median (range) time living in the UK = 2 months (9-105 days)] and the remainder resident for >6 months [residents; 23 months (6-121 months)]. Participants attended visits every 3 months for 15 months. At each visit, fasted blood samples were collected for analysis of serum 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), carboxy-terminal collagen crosslinks (CTX) and N-terminal propeptide of type I collagen (P1NP). Maximal voluntary contractions (MVC) were performed for grip strength (both arms) and for maximal isometric strength of the knee extensors (right knee).

    RESULTS: There were small seasonal variations in 25(OH)D concentrations within the newcomers and residents, but no seasonal variation in bone turnover markers. There was a positive, albeit small, association between 25(OH)D and knee extensor maximal isometric strength. Mixed modelling predicted that for each 1 nmol/L increase in 25(OH)D, peak torque would increase by 1 Nm (p = 0.04).

    CONCLUSIONS: This study suggests that vitamin D may be important for muscle health in young adults migrating from sunnier climates to high latitudes, yet the potential effect is small.

  2. Lau WJ, Gray S, Matsuura T, Emadzadeh D, Chen JP, Ismail AF
    Water Res, 2015 Sep 1;80:306-24.
    PMID: 26011136 DOI: 10.1016/j.watres.2015.04.037
    This review focuses on the development of polyamide (PA) thin film nanocomposite (TFN) membranes for various aqueous media-based separation processes such as nanofiltration, reverse osmosis and forward osmosis since the concept of TFN was introduced in year 2007. Although the total number of published TFN articles falls far short of the articles of the well-known thin film composite (TFC) membranes, its growth rate is significant, particularly since 2012. Generally, by incorporating an appropriate amount of nanofiller into a thin selective PA layer of a composite membrane, one could produce TFN membranes with enhanced separation characteristics as compared to the conventional TFC membrane. For certain cases, the resulting TFN membranes demonstrate not only excellent antifouling resistance and/or greater antibacterial effect, but also possibly overcome the trade-off effect between water permeability and solute selectivity. Furthermore, this review attempts to give the readers insights into the difficulties of incorporating inorganic nanomaterials into the organic PA layer whose thickness usually falls in a range of several-hundred nanometers. It is also intended to show new possible approaches to overcome these challenges in TFN membrane fabrication.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links