Displaying all 3 publications

Abstract:
Sort:
  1. Moloney G, Chan UT, Hamilton A, Zahidin AM, Grigg JR, Devasahayam RN
    Can J Ophthalmol, 2015 Feb;50(1):68-72.
    PMID: 25677286 DOI: 10.1016/j.jcjo.2014.10.014
    To describe 2 cases of spontaneous corneal clearing after Descemetorhexis: 1 after iatrogenic trauma (Case 1) and 1 as an intentional surgical intervention for Fuchs endothelial dystrophy (Case 2).
  2. Choo MM, Yeong CM, Grigg JR, Khaliddin N, Kadir AJ, Barnes EH, et al.
    Medicine (Baltimore), 2018 Nov;97(48):e13357.
    PMID: 30508927 DOI: 10.1097/MD.0000000000013357
    To report observations of horizontal corneal diameter (HCD) and central corneal thickness (CCT) changes in premature infants with stable optic disc cupping and intraocular pressures (IOPs). The HCD and CCT at term serve as a baseline for premature infants.Sixty-three premature infants were enrolled in a prospective case series. HCD, CCT, and IOP were measured. RetCam images of the optic discs were used to evaluate the cup-disc ratio (CDR) and read by an independent masked observer. Data were collected at between preterm (32-36 weeks) and again at term (37-41 weeks) postconceptual age. Left eye measurements were used for statistical analysis. Left eye findings were combined to construct predictive models for HCD and CCT.The mean HCD was 9.1 mm (standard deviation [SD] = 0.7 mm) at preterm and 10.0 mm (SD = 0.52 mm) at term. The mean CCT preterm was 618.8 (SD = 72.9) μm and at term 563.9 (SD = 50.7) μm, respectively. The average preterm CDR was 0.31 and at maturity was 0.33. Average IOP of preterm and term was 13.1 and 14.11 mm Hg, respectively. There was significant linear correlation between HCD with the postmenstrual age (r = 0.40, P 
  3. Ma A, Yousoof S, Grigg JR, Flaherty M, Minoche AE, Cowley MJ, et al.
    Genet Med, 2020 10;22(10):1623-1632.
    PMID: 32499604 DOI: 10.1038/s41436-020-0854-x
    PURPOSE: Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion.

    METHODS: We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases.

    RESULTS: We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld-Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6.

    CONCLUSIONS: We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously "hidden" heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links