Displaying all 2 publications

Abstract:
Sort:
  1. Alias A, Grimshaw RH, Khusnutdinova KR
    Chaos, 2013 Jun;23(2):023121.
    PMID: 23822486 DOI: 10.1063/1.4808249
    In the weakly nonlinear limit, oceanic internal solitary waves for a single linear long wave mode are described by the KdV equation, extended to the Ostrovsky equation in the presence of background rotation. In this paper we consider the scenario when two different linear long wave modes have nearly coincident phase speeds and show that the appropriate model is a system of two coupled Ostrovsky equations. These are systematically derived for a density-stratified ocean. Some preliminary numerical simulations are reported which show that, in the generic case, initial solitary-like waves are destroyed and replaced by two coupled nonlinear wave packets, being the counterpart of the same phenomenon in the single Ostrovsky equation.
  2. Grimshaw R, Stepanyants Y, Alias A
    Proc Math Phys Eng Sci, 2016 Jan;472(2185):20150416.
    PMID: 26997887
    It is well known that the Ostrovsky equation with normal dispersion does not support steady solitary waves. An initial Korteweg-de Vries solitary wave decays adiabatically through the radiation of long waves and is eventually replaced by an envelope solitary wave whose carrier wave and envelope move with different velocities (phase and group velocities correspondingly). Here, we examine the same initial condition for the Ostrovsky equation with anomalous dispersion, when the wave frequency increases with wavenumber in the limit of very short waves. The essential difference is that now there exists a steady solitary wave solution (Ostrovsky soliton), which in the small-amplitude limit can be described asymptotically through the solitary wave solution of a nonlinear Schrödinger equation, based at that wavenumber where the phase and group velocities coincide. Long-time numerical simulations show that the emergence of this steady envelope solitary wave is a very robust feature. The initial Korteweg-de Vries solitary wave transforms rapidly to this envelope solitary wave in a seemingly non-adiabatic manner. The amplitude of the Ostrovsky soliton strongly correlates with the initial Korteweg-de Vries solitary wave.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links