Displaying all 2 publications

Abstract:
Sort:
  1. Ng KY, Gui MM
    Physica D, 2020 Oct;411:132599.
    PMID: 32536738 DOI: 10.1016/j.physd.2020.132599
    The current global health emergency triggered by the pandemic COVID-19 is one of the greatest challenges we face in this generation. Computational simulations have played an important role to predict the development of the current pandemic. Such simulations enable early indications on the future projections of the pandemic and is useful to estimate the efficiency of control action in the battle against the SARS-CoV-2 virus. The SEIR model is a well-known method used in computational simulations of infectious viral diseases and it has been widely used to model other epidemics such as Ebola, SARS, MERS, and influenza A. This paper presents a modified SEIRS model with additional exit conditions in the form of death rates and resusceptibility, where we can tune the exit conditions in the model to extend prediction on the current projections of the pandemic into three possible outcomes; death, recovery, and recovery with a possibility of resusceptibility. The model also considers specific information such as ageing factor of the population, time delay on the development of the pandemic due to control action measures, as well as resusceptibility with temporal immune response. Owing to huge variations in clinical symptoms exhibited by COVID-19, the proposed model aims to reflect better on the current scenario and case data reported, such that the spread of the disease and the efficiency of the control action taken can be better understood. The model is verified using two case studies based on the real-world data in South Korea and Northern Ireland.
  2. Do TD, Gui MM, Ng KY
    PeerJ, 2021;9:e10806.
    PMID: 33604187 DOI: 10.7717/peerj.10806
    This article presents the assessment of time-dependent national-level restrictions and control actions and their effects in fighting the COVID-19 pandemic. By analysing the transmission dynamics during the first wave of COVID-19 in the country, the effectiveness of the various levels of control actions taken to flatten the curve can be better quantified and understood. This in turn can help the relevant authorities to better plan for and control the subsequent waves of the pandemic. To achieve this, a deterministic population model for the pandemic is firstly developed to take into consideration the time-dependent characteristics of the model parameters, especially on the ever-evolving value of the reproduction number, which is one of the critical measures used to describe the transmission dynamics of this pandemic. The reproduction number alongside other key parameters of the model can then be estimated by fitting the model to real-world data using numerical optimisation techniques or by inducing ad-hoc control actions as recorded in the news platforms. In this article, the model is verified using a case study based on the data from the first wave of COVID-19 in the Republic of Kazakhstan. The model is fitted to provide estimates for two settings in simulations; time-invariant and time-varying (with bounded constraints) parameters. Finally, some forecasts are made using four scenarios with time-dependent control measures so as to determine which would reflect on the actual situations better.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links