Displaying all 5 publications

Abstract:
Sort:
  1. Guo D, Sun J, Feng S
    J Sports Med Phys Fitness, 2025 Jan;65(1):132-139.
    PMID: 39287582 DOI: 10.23736/S0022-4707.24.16206-8
    BACKGROUND: Non-alcoholic fatty liver disease (NAFLD), linked to sedentary lifestyles and metabolic dysfunction, is highly prevalent. Exercise is an established intervention, but the relative efficacy of different exercise modalities remains unclear. The aim of this study was to compare the effects of moderate-intensity continuous aerobic training and High-Intensity Interval Training (HIIT) on physical fitness, biochemical parameters, and liver function in NAFLD patients.

    METHODS: Sixty NAFLD patients (32 males, 28 females; age: 49.7±8.7 years; BMI: 31.1±3.3 kg/m2) were randomized into HIIT, aerobic training, and control cohorts. The HIIT cohort performed 4-minute high-intensity intervals at 85-95% of peak heart rate, interspersed with 3-minute active recovery at 60-70% of peak heart rate for 30-40 minutes per session. The aerobic training cohort performed continuous exercise at 60-70% of peak heart rate for 45-60 minutes per session. Both intervention cohorts underwent 12 weeks of supervised training, thrice weekly. Before and after the intervention, assessments included cardiorespiratory fitness, muscular strength, flexibility, lipid profile, liver enzymes, inflammatory markers, insulin sensitivity, and oxidative stress markers.

    RESULTS: Compared to controls, both exercise cohorts showed significant improvements in cardiorespiratory fitness, muscular strength, and flexibility. However, HIIT elicited superior enhancements in cardiorespiratory fitness and muscular strength. Biochemically, both exercise cohorts exhibited reductions in triglycerides, low-density lipoprotein (LDL) cholesterol, liver enzymes (alanine aminotransferase [ALT], aspartate aminotransferase [AST]), inflammatory markers (C-reactive protein [CRP], interleukin-6 [IL-6]), insulin resistance (homeostatic model assessment of insulin resistance [HOMA-IR]), and oxidative stress markers (malondialdehyde [MDA], protein carbonyl). Notably, HIIT yielded more substantial improvements in these parameters.

    CONCLUSIONS: HIIT and traditional aerobic training are effective in improving physical fitness and ameliorating biochemical indicators in NAFLD patients. Notably, HIIT appears to be more advantageous in enhancing cardiorespiratory fitness, muscular strength, and metabolic, inflammatory, and oxidative stress profiles, suggesting its potential as a time-efficient and effective exercise modality for managing NAFLD.

  2. Lou Y, Shi J, Guo D, Qureshi AK, Song L
    Saudi J Biol Sci, 2017 May;24(4):803-807.
    PMID: 28490949 DOI: 10.1016/j.sjbs.2015.06.025
    Human glioma is a highly fatal tumor with a significant feature of immune suppression. The functions of PD-L1 refer to co-simulation and immune regulation. To investigate expression and functional activity of PD-L1 in human glioma cell in vivo and in vitro. Expressions of PD-L1mRNA and protein in the human glioma cell line were analyzed with quantitative RT-PCR and flow cytometer; and then expression of PD-L1 in tissue specimens of 10 glioma patients was treated with immunohistochemical analysis; glioma cell and allogeneic CD4+ and CD8+ T cells were co-cultured, and cytokine IFN-γ, IL-2 and IL-10 in cultured supernatant fluid were determined with ELISA; upon blocking the interaction between glioma cell and the immune cell with PD-L1 monoclonal antibody (5H1), surface markers on immune cells were analyzed using flow cytometer. All human glioma cell lines constitutively expressed PD-L1, and IFN-γ induced glioma cell to highly express PD-L1. It was shown through immunohistochemical analysis that glioma specimen expressed PD-L1, while expression of PD-L1 was not observed in normal tissue and normal human brain near the tumor location. The release of IFN-γ and IL-2 was inhibited, while IL-10 was increased slightly. Glioma cell may escape from immune recognition and injury with the help of PD-L1, which is a significant pathogenic mechanism of glioma.
  3. Liu J, Xuan D, Chai J, Guo D, Huang Y, Liu S, et al.
    ACS Omega, 2020 May 05;5(17):10011-10020.
    PMID: 32391489 DOI: 10.1021/acsomega.0c00365
    A mild and effective synthesis of resorcinol-furfural (RF) thermosetting resin was proposed with ethanol as a distinctive solvent, which, as a usually neglected factor, was shown to not only help form a homogeneous reaction system but also observably reduce the energy barriers between the early intermediates and transition states in addition reactions by explicit solvent effects, drawn from theoretical calculation conclusions. Besides, the para-additions on aromatic rings were more dominant than ortho-additions with the same reactants, which affected the final link types of monomers verified by Fourier transform infrared spectroscopy and two-dimensional nuclear magnetic resonance tests. The prepared resin can be assigned to a relatively fast gel speed and a high residual mass (65.25%) after pyrolysis in a N2 atmosphere by adjusting the molar ratios of F to R, and the curing of that was a complex reaction, with a curing temperature around 149 °C and an activation energy of about 49.11 kJ mol-1 obtained by the Kissinger method.
  4. Che Mohd Nassir CMN, Hashim S, Wong KK, Abdul Halim S, Idris NS, Jayabalan N, et al.
    Mol Neurobiol, 2021 Aug;58(8):4188-4215.
    PMID: 34176095 DOI: 10.1007/s12035-021-02457-z
    Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) due to novel coronavirus disease 2019 (COVID-19) has affected the global society in numerous unprecedented ways, with considerable morbidity and mortality. Both direct and indirect consequences from COVID-19 infection are recognized to give rise to cardio- and cerebrovascular complications. Despite current limited knowledge on COVID-19 pathogenesis, inflammation, endothelial dysfunction, and coagulopathy appear to play critical roles in COVID-19-associated cerebrovascular disease (CVD). One of the major subtypes of CVD is cerebral small vessel disease (CSVD) which represents a spectrum of pathological processes of various etiologies affecting the brain microcirculation that can trigger subsequent neuroinflammation and neurodegeneration. Prevalent with aging, CSVD is a recognized risk factor for stroke, vascular dementia, and Alzheimer's disease. In the background of COVID-19 infection, the heightened cellular activations from inflammations and oxidative stress may result in elevated levels of microthrombogenic extracellular-derived circulating microparticles (MPs). Consequently, MPs could act as pro-coagulant risk factor that may serve as microthrombi for the vulnerable microcirculation in the brain leading to CSVD manifestations. This review aims to appraise the accumulating body of evidence on the plausible impact of COVID-19 infection on the formation of microthrombogenic MPs that could lead to microthrombosis in CSVD manifestations, including occult CSVD which may last well beyond the pandemic era.
  5. Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, et al.
    J Nanobiotechnology, 2023 Oct 10;21(1):370.
    PMID: 37817254 DOI: 10.1186/s12951-023-02139-z
    Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links