Displaying all 3 publications

Abstract:
Sort:
  1. Jeevaratnam K, Guzadhur L, Goh YM, Grace AA, Huang CL
    Acta Physiol (Oxf), 2016 Feb;216(2):186-202.
    PMID: 26284956 DOI: 10.1111/apha.12577
    Normal cardiac excitation involves orderly conduction of electrical activation and recovery dependent upon surface membrane, voltage-gated, sodium (Na(+) ) channel α-subunits (Nav 1.5). We summarize experimental studies of physiological and clinical consequences of loss-of-function Na(+) channel mutations. Of these conditions, Brugada syndrome (BrS) and progressive cardiac conduction defect (PCCD) are associated with sudden, often fatal, ventricular tachycardia (VT) or fibrillation. Mouse Scn5a(+/-) hearts replicate important clinical phenotypes modelling these human conditions. The arrhythmic phenotype is associated not only with the primary biophysical change but also with additional, anatomical abnormalities, in turn dependent upon age and sex, each themselves exerting arrhythmic effects. Available evidence suggests a unified binary scheme for the development of arrhythmia in both BrS and PCCD. Previous biophysical studies suggested that Nav 1.5 deficiency produces a background electrophysiological defect compromising conduction, thereby producing an arrhythmic substrate unmasked by flecainide or ajmaline challenge. More recent reports further suggest a progressive decline in conduction velocity and increase in its dispersion particularly in ageing male Nav 1.5 haploinsufficient compared to WT hearts. This appears to involve a selective appearance of slow conduction at the expense of rapidly conducting pathways with changes in their frequency distributions. These changes were related to increased cardiac fibrosis. It is thus the combination of the structural and biophysical changes both accentuating arrhythmic substrate that may produce arrhythmic tendency. This binary scheme explains the combined requirement for separate, biophysical and structural changes, particularly occurring in ageing Nav 1.5 haploinsufficient males in producing clinical arrhythmia.
  2. Ning F, Luo L, Ahmad S, Valli H, Jeevaratnam K, Wang T, et al.
    Pflugers Arch, 2016 Apr;468(4):655-65.
    PMID: 26545784 DOI: 10.1007/s00424-015-1750-0
    Catecholaminergic polymorphic ventricular tachycardia (CPVT) predisposes to ventricular arrhythmia due to altered Ca(2+) homeostasis and can arise from ryanodine receptor (RyR2) mutations including RyR2-P2328S. Previous reports established that homozygotic murine RyR2-P2328S (RyR2 (S/S)) hearts show an atrial arrhythmic phenotype associated with reduced action potential (AP) conduction velocity and sodium channel (Nav1.5) expression. We now relate ventricular arrhythmogenicity and slowed AP conduction in RyR2 (S/S) hearts to connexin-43 (Cx43) and Nav1.5 expression and Na(+) current (I Na). Stimulation protocols applying extrasystolic S2 stimulation following 8 Hz S1 pacing at progressively decremented S1S2 intervals confirmed an arrhythmic tendency despite unchanged ventricular effective refractory periods (VERPs) in Langendorff-perfused RyR2 (S/S) hearts. Dynamic pacing imposing S1 stimuli then demonstrated that progressive reductions of basic cycle lengths (BCLs) produced greater reductions in conduction velocity at equivalent BCLs and diastolic intervals in RyR2 (S/S) than WT, but comparable changes in AP durations (APD90) and their alternans. Western blot analyses demonstrated that Cx43 protein expression in whole ventricles was similar, but Nav1.5 expression in both whole tissue and membrane fractions were significantly reduced in RyR2 (S/S) compared to wild-type (WT). Loose patch-clamp studies similarly demonstrated reduced I Na in RyR2 (S/S) ventricles. We thus attribute arrhythmogenesis in RyR2 (S/S) ventricles resulting from arrhythmic substrate produced by reduced conduction velocity to downregulated Nav1.5 reducing I Na, despite normal determinants of repolarization and passive conduction. The measured changes were quantitatively compatible with earlier predictions of linear relationships between conduction velocity and the peak I Na of the AP but nonlinear relationships between peak I Na and maximum Na(+) permeability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links