This single centre study was designed to demonstrate feasibility, safety and efficacy of the Vivant Z stent (PFM AG, Cologne, Germany). Patients with de novo lesion were recruited. Coronary angioplasty was performed with either direct stenting or after balloon predilatation. Repeated angiogram was performed 6 months later or earlier if clinically indicated. Between January to June 2003, a total of 50 patients were recruited (mean age 55.8 +/- 9 years). A total of 52 lesions were stented successfully. Mean reference diameter was 2.77 mm (+/-0.59 SD, range 2.05-4.39 mm) with mean target lesion stenosis of 65.5% (+/-11.6 SD, range 50.1-93.3%). Forty-six lesions (88.5%) were American College of Cardiologist/American Heart Association class B/C types. Direct stenting was performed in 18 (34.6%) lesions. Mean stent diameter was 3.18 mm (+/-0.41 SD, range 2.5-4 mm), and mean stent length was 14.86 mm (+/-2.72 SD, range 9-18 mm). The procedure was complicated in only one case which involved the loss of side branch with no clinical sequelae. All treated lesions achieved Thrombolysis In Myocardial Infarction 3 flow. Mean residual diameter stenosis was 12.2% (+/-7.55 SD, range 0-22.6%) with acute gain of 1.72 mm (+/-0.50 SD, range 0.5-2.8). At 6 months, there was no major adverse cardiovascular event. Repeated angiography after 6 months showed a restenosis rate of 17% (defined as >50% diameter restenosis). Mean late loss was 0.96 mm (+/-0.48 SD) with loss index of 0.61 (+/-0.38 SD). The restenosis rate of those lesions less than 3.0 mm in diameter was 22.2% compared with 6.25% in those lesions more than 3.0 mm in diameter. The Vivant Z stent was shown to be safe and efficacious with low restenosis rate in de novo coronary artery lesion.
Conventional diuretic agents are very effective agents in relieving volume overload and congestive symptoms in chronic heart failure (CHF). However, they are associated with activation of the renin-angiotensin system (RAS) and the sympathetic nervous system and a reduction in glomerular filtration rate, all of which have been associated with adverse outcomes in CHF. Therefore, there is an increasing interest in drugs that target the natriuretic system without neurohormonal activation and deterioration of renal function. In this review, we will discuss the underlying rationale and evidence behind currently pursued strategies that target the natriuretic system. This includes the administration of natriuretic peptides (NPs) and strategies that potentiate the NP system, such as neutral endopeptidase inhibition. We will also highlight some potentially important interactions of these strategies with drugs that target the RAS.