Displaying all 4 publications

Abstract:
Sort:
  1. Hambali NA, Hashim AM
    Nanomicro Lett, 2015;7(4):317-324.
    PMID: 30464977 DOI: 10.1007/s40820-015-0045-5
    The effects of the supporting reagents hexamethylenetetramine (HMTA) and potassium chloride (KCl) mixed in zinc nitrate hexahydrate (Zn(NO3)2·6H2O) on the morphological, structural, and optical properties of the resulting ZnO nanostructures electrodeposited on graphene/glass substrates were investigated. The supporting reagent HMTA does not increase the density of nanorods, but it does remarkably improve the smoothness of the top edge surfaces and the hexagonal shape of the nanorods even at a low temperature of 75 °C. Hydroxyl (OH-) ions from the HMTA suppress the sidewall growth of non-polar planes and promote the growth of ZnO on the polar plane to produce vertically aligned nanorods along the c axis. By contrast, the highly electronegative chlorine (Cl-) ions from the supporting reagent KCl suppress the growth of ZnO on the polar plane and promote the growth on non-polar planes to produce vertical stacking nanowall structures. HMTA was found to be able to significantly improve the crystallinity of the grown ZnO structures, as indicated by the observation of much lower FWHM values and a higher intensity ratio of the emission in the UV region to the emission in the visible region. Equimolar mixtures of Zn(NO3)2·6H2O and the supporting reagents HMTA and KCl seem to provide the optimum ratio of concentrations for the growth of high-density, uniform ZnO nanostructures. The corresponding transmittances for such molar ranges are approximately 55-58 % (HMTA) and 63-70 % (KCl), which are acceptable for solar cell and optoelectronic devices.
  2. Hambali NA, Yahaya H, Mahmood MR, Terasako T, Hashim AM
    Nanoscale Res Lett, 2014;9(1):609.
    PMID: 25411567 DOI: 10.1186/1556-276X-9-609
    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.
  3. Hambali NA, Mahdi MA, Al-Mansoori MH, Abas AF, Saripan MI
    Opt Express, 2009 Jul 06;17(14):11768-75.
    PMID: 19582091
    We have investigated the characteristics of Brillouin-Erbium fiber laser (BEFL) with variation of Erbium-doped fiber amplifier (EDFA) locations in a ring cavity configuration. Three possible locations of the EDFA in the laser cavity have been studied. The experimental results show that the location of EDFA plays vital role in determining the output power and the tuning range. Besides the Erbium gain, Brillouin gain also contributes to the performance of the BEFL. By placing the EDFA next to the Brillouin gain medium (dispersion compensating fiber), the Brillouin pump signal is amplified thereby generating higher intensities of Brillouin Stokes line. This efficient process suppresses the free running self-lasing cavity modes from oscillating in cavity as a result of higher Stokes laser power and thus provide a wider tuning range. At the injected Brillouin pump power of 1.6 mW and the maximum 1480 nm pump power of 135 mW, the maximum Stokes laser power of 25.1 mW was measured and a tuning range of 50 nm without any self-lasing cavity modes was obtained.
  4. Hambali NA, Mahdi MA, Al-Mansoori MH, Saripan MI, Abas AF
    Appl Opt, 2009 Sep 20;48(27):5055-60.
    PMID: 19767918 DOI: 10.1364/AO.48.005055
    The operation of a single-wavelength Brillouin-erbium fiber laser (BEFL) system with a Brillouin pump preamplified technique for different output coupling ratios in a ring cavity is experimentally demonstrated. The characteristics of Brillouin Stokes power and tunability were investigated in this research. The efficiency of the BEFL operation was obtained at an optimum output coupling ratio of 95%. By fixing the Brillouin pump wavelength at 1550 nm while its power was set at 1.6 mW and the 1480 pump power was set to its maximum value of 135 mW, the Brillioun Stokes power was found to be 28.7 mW. The Stokes signal can be tuned within a range of 60 nm from 1520 to 1580 nm without appearances of the self-lasing cavity modes in the laser system.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links