Displaying all 3 publications

Abstract:
Sort:
  1. Slatter MA, Rao K, Abd Hamid IJ, Nademi Z, Chiesa R, Elfeky R, et al.
    Biol. Blood Marrow Transplant., 2018 03;24(3):529-536.
    PMID: 29155317 DOI: 10.1016/j.bbmt.2017.11.009
    We previously published results for 70 children who received conditioning with treosulfan and cyclophosphamide (n = 30) or fludarabine (n = 40) before undergoing hematopoietic stem cell transplantation (HSCT) for primary immunodeficiency (PID). Toxicity was lower and T cell chimerism was better in the patients receiving fludarabine, but cohort numbers were relatively small and follow-up was short. Here we report outcomes of 160 children who received homogeneous conditioning with treosulfan, fludarabine, and, in most cases, alemtuzumab (n = 124). The median age at transplantation was 1.36 years (range, .09 to 18.25 years). Donors included 73 matched unrelated, 54 1 to 3 antigen-mismatched unrelated, 12 matched sibling, 17 other matched family, and 4 haploidentical donors. Stem cell source was peripheral blood stem cells (PBSCs) in 70, bone marrow in 49, and cord blood in 41. Median duration of follow-up was 4.3 years (range, .8 to 9.4 years). Overall survival was 83%. No patients had veno-occlusive disease. Seventy-four patients (46%) had acute GVHD, but only 14 (9%) greater than grade II. Four patients underwent successful retransplantation for graft loss or poor immune reconstitution. Another patient experienced graft rejection and died. There was no association between T cell chimerism >95% and stem cell source, but a significant association was seen between myeloid chimerism >95% and use of PBSCs without an increased risk of significant GVHD compared with other sources. All 11 patients with severe combined immunodeficiency diagnosed at birth were alive at up to 8.7 years of follow-up. Long-term studies are needed to determine late gonadotoxic effects, and pharmacokinetic studies are needed to identify whether specific targeting is advantageous. The combination of treosulfan, fludarabine, and alemtuzumab is associated with excellent results in HSCT for PID.
  2. Duncan CJ, Mohamad SM, Young DF, Skelton AJ, Leahy TR, Munday DC, et al.
    Sci Transl Med, 2015 Sep 30;7(307):307ra154.
    PMID: 26424569 DOI: 10.1126/scitranslmed.aac4227
    Type I interferon (IFN-α/β) is a fundamental antiviral defense mechanism. Mouse models have been pivotal to understanding the role of IFN-α/β in immunity, although validation of these findings in humans has been limited. We investigated a previously healthy child with fatal encephalitis after inoculation of the live attenuated measles, mumps, and rubella (MMR) vaccine. By targeted resequencing, we identified a homozygous mutation in the high-affinity IFN-α/β receptor (IFNAR2) in the proband, as well as a newborn sibling, that rendered cells unresponsive to IFN-α/β. Reconstitution of the proband's cells with wild-type IFNAR2 restored IFN-α/β responsiveness and control of IFN-attenuated viruses. Despite the severe outcome of systemic live vaccine challenge, the proband had previously shown no evidence of heightened susceptibility to respiratory viral pathogens. The phenotype of IFNAR2 deficiency, together with similar findings in STAT2-deficient patients, supports an essential but narrow role for IFN-α/β in human antiviral immunity.
  3. Stremenova Spegarova J, Lawless D, Mohamad SMB, Engelhardt KR, Doody G, Shrimpton J, et al.
    Blood, 2020 Aug 27;136(9):1055-1066.
    PMID: 32518946 DOI: 10.1182/blood.2020005844
    Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links