Displaying all 2 publications

Abstract:
Sort:
  1. Abualigah LM, Hanandeh ES, Khader AT, Otair MA, Shandilya SK
    Curr Med Imaging, 2020;16(4):296-306.
    PMID: 32410533 DOI: 10.2174/1573405614666180903112541
    BACKGROUND: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters.

    AIMS: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster.

    METHODS: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques.

    RESULTS: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem.

    CONCLUSION: The performance of the text clustering is useful by adding the β operator to the hill climbing.

  2. Abualigah L, Habash M, Hanandeh ES, Hussein AM, Shinwan MA, Zitar RA, et al.
    J Bionic Eng, 2023 Feb 07.
    PMID: 36777369 DOI: 10.1007/s42235-023-00332-2
    This study proposes a novel nature-inspired meta-heuristic optimizer based on the Reptile Search Algorithm combed with Salp Swarm Algorithm for image segmentation using gray-scale multi-level thresholding, called RSA-SSA. The proposed method introduces a better search space to find the optimal solution at each iteration. However, we proposed RSA-SSA to avoid the searching problem in the same area and determine the optimal multi-level thresholds. The obtained solutions by the proposed method are represented using the image histogram. The proposed RSA-SSA employed Otsu's variance class function to get the best threshold values at each level. The performance measure for the proposed method is valid by detecting fitness function, structural similarity index, peak signal-to-noise ratio, and Friedman ranking test. Several benchmark images of COVID-19 validate the performance of the proposed RSA-SSA. The results showed that the proposed RSA-SSA outperformed other metaheuristics optimization algorithms published in the literature.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links