In March 2018, an algal bloom of Pseudo-nitzschia was detected, for the first time, in a semi-enclosed lagoon in Miri, Sarawak, Malaysia Borneo. The plankton samples were collected for cell enumeration and species identification by electron microscopy and molecular characterization. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was performed to detect and quantify the neurotoxin domoic acid (DA) in both the plankton and shellfish samples. The abundance of Pseudo-nitzschia cells ranged from 5.6 × 105 to 3.5 × 106 cell L-1 during the bloom event. Morphological observation of the cells by transmission electron microscopy showed that the plankton samples comprised a single Pseudo-nitzschia morphotype resembling P. cuspidata. The ITS2 sequence-structure phylogenetic inference further supported the species identity as Pseudo-nitzschia cuspidata. Low levels of DA were detected in the plankton samples, with cellular DA, particulate DA, and dissolved DA of 257-504 fg DA cell-1, 676 ng L-1, and 15 ng L-1, respectively. The amount of DA, 8 μg g-1 tissue, was found present in the shellfish sample (Magallana sp.) which is below the regulatory limit of 20 μg DA g-1 tissue. The study documented, for the first time, DA contamination in shellfish that associated with bloom of P. cuspidata in the Western Pacific region.
Thirty-four strains of Heterocapsa were established from Malaysian waters and their morphologies were examined by light, scanning, and transmission electron microscopy. Three species, H. bohaiensis, H. huensis, and H. rotundata, and three new species, H. borneoensis sp. nov., H. limii sp. nov., and H. iwatakii sp. nov. were described in this study. The three species were differentiated morphologically by unique characteristics of cell size, shape, displacement of the cingulum, shape and position of nucleus, the number and position of pyrenoids, and body scale ultrastructure. The species delimitations were robustly supported by the molecular data. A light-microscopy-based key to species of Heterocapsa is established, with two major groups, i.e., species with a single pyrenoid, and species with multiple pyrenoids. Bioassays were conducted by exposing Artemia nauplii to Heterocapsa densities of 1-5 × 105 cells mL-1, and treatments exposed to H. borneoensis showed naupliar mortality, while no naupliar death was observed in the treatments exposed to cells of H. bohaiensis, H. huensis, H. limii, and H. iwatakii. Naupliar death was observed during the initial 24 h for both tested H. borneoensis strains, and mortality rates increased up to 50% after 72-h exposure. This study documented for the first time the diversity and cytotoxic potency of Heterocapsa species from Malaysian waters.
This study describes two novel species of marine dinophytes in the genus Alexandrium. Morphological characteristics and phylogenetic analyses support the placement of the new taxa, herein designated as Alexandrium limii sp. nov. and A. ogatae sp. nov. Alexandrium limii, a species closely related to A. taylorii, is distinguished by having a shorter 2'/4' suture length, narrower plates 1' and 6'', with larger length: width ratios, and by the position of the ventral pore (Vp). Alexandrium ogatae is distinguishable with its metasert plate 1' having almost parallel lateral margins, and by lacking a Vp. Production of paralytic shellfish toxins (PSTs), cycloimines, and goniodomins (GDs) in clonal cultures of A. ogatae, A. limii, and A. taylorii were examined analytically and the results showed that all strains contained GDs, with GDA as major variants (6-14 pg cell-1) for all strains except the Japanese strain of A. limii, which exclusively had a desmethyl variant of GDA (1.4-7.3 pg cell-1). None of the strains contained detectable levels of PSTs and cycloimines.