Displaying all 3 publications

Abstract:
Sort:
  1. Hazalin NAMN, Liao P, Hassan Z
    Behav Brain Res, 2020 09 01;393:112781.
    PMID: 32619565 DOI: 10.1016/j.bbr.2020.112781
    Chronic cerebral hypoperfusion (CCH) been well characterized as a common pathological status contributing to neurodegenerative diseases such as Alzheimer's disease and vascular dementia. CCH is an important factor that leads to cognitive impairment, but the underlying neurobiological mechanism is poorly understood and no effective treatment is available. Recently, transient receptor potential melastatin 4 (TRPM4) cation channel has been identified as an important molecular element in focal cerebral ischemia. Over activation of the channel is a major molecular mechanism of oncotic cell death. However, the role of TRPM4 in CCH that propagates global brain hypoxia have not been explored. Therefore, the present study is designed to investigate the effect of TRPM4 inhibition on the cognitive functions of the rats following CCH via permanent bilateral occlusion of common carotid arteries (PBOCCA) model. In this model, treatment with siRNA suppressed TRPM4 expression at both the mRNA and protein levels and improved cognitive deficits of the CCH rats without affecting their motor function. Furthermore, treatment with siRNA rescued the LTP impairment in CCH-induced rats. Consistent with the restored of LTP, western blot analysis revealed that siRNA treatment prevented the reduction of synaptic proteins, including calcium/calmodulin-dependent kinase II alpha (CaMKIIα) and brain-derived neurotrophic factor (BDNF) in brain regions of CCH rats. The present findings provide a novel role of TRPM4 in restricting cognitive functions in CCH and suggest inhibiting TRPM4 may represent a promising therapeutic strategy in targeting ion channels to prevent the progression of cognitive deficits induced by ischemia.
  2. Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K
    J Diet Suppl, 2020 Oct 14.
    PMID: 33962540 DOI: 10.1080/19390211.2020.1830223
    Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly (p 
  3. Poore CP, Hazalin NAMN, Wei S, Low SW, Chen B, Nilius B, et al.
    Neurobiol Dis, 2024 Feb;191:106408.
    PMID: 38199274 DOI: 10.1016/j.nbd.2024.106408
    Excitotoxicity arises from unusually excessive activation of excitatory amino acid receptors such as glutamate receptors. Following an energy crisis, excitotoxicity is a major cause for neuronal death in neurological disorders. Many glutamate antagonists have been examined for their efficacy in mitigating excitotoxicity, but failed to generate beneficial outcome due to their side effects on healthy neurons where glutamate receptors are also blocked. In this study, we found that during chronic hypoxia there is upregulation and activation of a nonselective cation channel TRPM4 that contributes to the depolarized neuronal membrane potential and enhanced glutamate-induced calcium entry. TRPM4 is involved in modulating neuronal membrane excitability and calcium signaling, with a complex and multifaceted role in the brain. Here, we inhibited TRPM4 using a newly developed blocking antibody M4P, which could repolarize the resting membrane potential and ameliorate calcium influx upon glutamate stimulation. Importantly, M4P did not affect the functions of healthy neurons as the activity of TRPM4 channel is not upregulated under normoxia. Using a rat model of chronic hypoxia with both common carotid arteries occluded, we found that M4P treatment could reduce apoptosis in the neurons within the hippocampus, attenuate long-term potentiation impairment and improve the functions of learning and memory in this rat model. With specificity to hypoxic neurons, TRPM4 blocking antibody can be a novel way of controlling excitotoxicity with minimal side effects that are common among direct blockers of glutamate receptors.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links