Displaying all 5 publications

Abstract:
Sort:
  1. Elia-Amira NMR, Chen CD, Low VL, Lau KW, Haziqah-Rashid A, Amelia-Yap ZH, et al.
    J Med Entomol, 2019 10 28;56(6):1715-1725.
    PMID: 31290534 DOI: 10.1093/jme/tjz117
    Resistance status of Aedes albopictus (Diptera: Culicidae) collected from Sabah, East Malaysia, was evaluated against four major classes of adulticides, namely pyrethroid, carbamate, organochlorine, and organophosphate. Adult bioassays conforming to WHO standard protocols were conducted to assess knockdown and mortality rates of Ae. albopictus. Among tested pyrethroid adulticides, only cyfluthrin, lambda-cyaholthrin, and deltamethrin were able to inflict total knockdown. The other adulticide classes mostly failed to cause any knockdown; the highest knockdown rate was only 18.33% for propoxur. With regards to mortality rate, Ae. albopictus was unanimously susceptible toward all pyrethroids, dieldrin, and malathion, but exhibited resistance toward bendiocarb, propoxur, dichlorodiphenyltrichloroethane, and fenitrothion. Additionally, correlation analysis demonstrated cross-resistance between bendiocarb and propoxur, and malathion and propoxur. In conclusion, this study has disclosed that pyrethroids are still generally effective for Aedes control in Sabah, Malaysia. The susceptibility status of Ae. albopictus against pyrethroids in descending order was cyfluthrin > lambda-cyhalothrin > deltamethrin > etofenprox > permethrin.
  2. Haziqah-Rashid A, Chen CD, Lau KW, Low VL, Sofian-Azirun M, Suana IW, et al.
    J Med Entomol, 2019 02 25;56(2):514-518.
    PMID: 30462258 DOI: 10.1093/jme/tjy208
    This study was conducted to monitor the susceptibility status of Aedes aegypti (Linnaeus) larvae in the Sunda Islands of Indonesia against various organophosphates and organochlorines. Larval bioassay was performed in accordance with the World Health Organization standard protocol. Field-collected and reference strains of Ae. aegypti larvae were tested against diagnostic doses of eight larvicides belonging to organophosphates and organochlorines, namely bromophos (0.050 mg/liter), chlopyrifos (0.002 mg/liter), fenitrothion (0.020 mg/liter), fenthion (0.025 mg/liter), malathion (0.125 mg/liter), temephos (0.012 mg/liter), DDT (0.012 mg/liter), and dieldrin (0.025 mg/liter). Mortality rates of larvae were recorded at 24-h posttreatment. This study showed that Ae. aegypti larvae from Padang, Samarinda, Manggarai Barat, and South Central Timor were susceptible to both fenitrothion and dieldrin (mortality rates ≥ 98%). About 6 out of 10 field strains of Ae. aegypti larvae were resistant (<80% mortality rates) against fenthion, whereas Ae. aegypti larvae from Kuningan, Samarinda, Sumba, and South Central Timor exhibited some degrees of resistance (mortality rates 80-98%). All field-collected Ae. aegypti larvae were resistant against diagnostic doses of chlorpyrifos, malathion, temephos, and DDT with mortality rates ranging from 0 to 74.67%. Continued insecticide susceptibility studies are essential to identify the efficacy of insecticides for an improved dengue vector control and to delay the development of insecticide resistance.
  3. Elia-Amira NMR, Chen CD, Low VL, Lau KW, Haziqah-Rashid A, Amelia-Yap ZH, et al.
    Trop Biomed, 2021 Jun 01;38(2):196-204.
    PMID: 34172711 DOI: 10.47665/tb.38.2.058
    Susceptibility status of Aedes albopictus (Skuse) sampled from residential areas in Interior, Sandakan and Tawau divisions of Sabah, Malaysia, was evaluated based on the WHOrecommended doses of organochlorine and organophosphate larvicides. To determine susceptibility status, larval bioassays were carried out and post 24-hour mortalities based on WHO resistance classifications were adopted. The results demonstrated that Ae. albopictus larvae were resistant toward 5 out of the 8 larvicides tested. Larvae from all populations were resistant against bromophos, fenitrothion, malathion, temephos and dichlorodiphenyltrichloroethane (DDT), with mortalities ranging from 0.00 to 89.33%. Dieldrin, on the other hand, could induce 100.00% mortalities in all populations, followed by fenthion and chlorpyrifos, with mortalities ranging from 97.33 to 100.00% and 81.33 to 100.00% respectively. Despite most populations exhibiting similitude in their resistance status, larvae from Sandakan exhibited the highest resistance level whereas the lowest level was observed in Keningau. In view of the inadequacy of some larvicides in controlling Ae. albopictus in this study, integrated management such as insecticide rotation or combination of interventions is warranted.
  4. Elia-Amira NMR, Chen CD, Low VL, Lau KW, Haziqah-Rashid A, Amelia-Yap ZH, et al.
    J Med Entomol, 2022 01 12;59(1):301-307.
    PMID: 34459477 DOI: 10.1093/jme/tjab146
    The efficacy of three groups of insect growth regulators, namely juvenile hormone mimics (methoprene and pyriproxyfen), chitin synthesis inhibitors (diflubenzuron and novaluron), and molting disruptor (cyromazine) was evaluated for the first time, against Aedes albopictus Skuse (Diptera: Culicidae) larvae from 14 districts in Sabah, Malaysia. The results showed that all field populations of Ae. albopictus were susceptible towards methoprene, pyriproxyfen, diflubenzuron, novaluron, and cyromazine, with resistance ratio values ranging from 0.50-0.90, 0.60-1.00, 0.67-1.17, 0.71-1.29, and 0.74-1.07, respectively. Overall, the efficacy assessment of insect growth regulators in this study showed promising outcomes and they could be further explored as an alternative to conventional insecticides.
  5. Amelia-Yap ZH, Sofian-Azirun M, Chen CD, Suana IW, Lau KW, Elia-Amira NMR, et al.
    J Med Entomol, 2019 04 16;56(3):811-816.
    PMID: 30715464 DOI: 10.1093/jme/tjz007
    The emergence of pyrethroid resistance in Aedes aegypti (L.) has limited the success of vector control. Early detection of resistance could assist authorities in deciding well-suited control strategies to minimize operational failures of Ae. aegypti control. Herein, biochemical analysis was performed to investigate the mechanisms involved in pyrethroid resistance in nine populations of Indonesian Ae. aegypti. Enzymes of adult Ae. aegypti such as esterases (ESTs), glutathione-S-transferases (GSTs), and mixed-function oxidases (MFOs) were characterized. Elevated MFO activity was correlated with resistance phenotype, indicating the role of this enzyme in contributing to pyrethroid resistance. No significant correlations were shown between pyrethroid resistance phenotype and α-ESTs, suggesting that marginally exceeded enzyme levels relative to the reference strain in some pyrethroid-susceptible populations were causative factor for insecticide resistance in other groups of insecticides. However, significant correlation was demonstrated between β-ESTs and pyrethroid resistance phenotype. The lowest enzyme levels in GSTs indicated that this enzyme was not predominant in causing pyrethroid resistance, despite the presence of significant correlations. Because metabolic detoxification fails to comprehensively explain the pyrethroid resistance in some Indonesian Ae. aegypti, additional mechanisms such as altered target sites in voltage-gated sodium channel may also contribute to the high pyrethroid resistance in Ae. aegypti.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links