Displaying all 3 publications

Abstract:
Sort:
  1. Mason VC, Helgen KM, Murphy WJ
    J Hered, 2019 03 05;110(2):158-172.
    PMID: 30247638 DOI: 10.1093/jhered/esy046
    The evolutionary history of the colugo, a gliding arboreal mammal distributed throughout Sundaland, was influenced by the location of and connections between forest habitats. By comparing colugo phylogenetic patterns, species ecology, sample distributions, and times of divergence to those of other Sundaic taxa with different life-history traits and dispersal capabilities, we inferred the probable distribution of paleo-forest corridors and their influence on observed biogeographic patterns. We identified a consistent pattern of early diversification between east and west Bornean lineages in colugos, lesser mouse deer, and Sunda pangolins, but not in greater mouse deer. This deep east-west split within Borneo has not been commonly described in mammals. Colugos on West Borneo diverged from colugos in Peninsular Malaysia and Sumatra in the late Pliocene, however most other mammalian populations distributed across these same geographic regions diverged from a common ancestor more recently in the Pleistocene. Low genetic divergence between colugos on large landmasses and their neighboring satellite islands indicated that past forest distributions were recently much larger than present refugial distributions. Our analysis of colugo evolutionary history reconstructs Borneo as the most likely ancestral area of origin for Sunda colugos, and suggests that forests present during the middle Pliocene within the Sunda Shelf were more evergreen and contiguous, while forests were more fragmented, transient, seasonal, or with lower density canopies in the Pleistocene.
  2. Brandt JR, van Coeverden de Groot PJ, Witt KE, Engelbrektsson PK, Helgen KM, Malhi RS, et al.
    J Hered, 2018 06 27;109(5):553-565.
    PMID: 29684146 DOI: 10.1093/jhered/esy019
    The Sumatran rhinoceros (Dicerorhinus sumatrensis), once widespread across Southeast Asia, now consists of as few as 30 individuals within Sumatra and Borneo. To aid in conservation planning, we sequenced 218 bp of control region mitochondrial (mt) DNA, identifying 17 distinct mitochondrial haplotypes across modern (N = 13) and museum (N = 26) samples. Museum specimens from Laos and Myanmar had divergent mtDNA, consistent with the placement of western mainland rhinos into the distinct subspecies D. s. lasiotis (presumed extinct). Haplotypes from Bornean rhinos were highly diverse, but dissimilar from those of other regions, supporting the distinctiveness of the subspecies D. s. harrissoni. Rhinos from Sumatra and Peninsular Malaysia shared mtDNA haplotypes, consistent with their traditional placement into a single subspecies D. s sumatrensis. Modern samples of D. s. sumatrensis were genotyped at 18 microsatellite loci. Rhinos within Sumatra formed 2 sub-populations, likely separated by the Barisan Mountains, though with only modest genetic differentiation between them. There are so few remaining Sumatran rhinoceros that separate management strategies for subspecies or subpopulations may not be viable, while each surviving rhino pedigree is likely to retain alleles found in no other individuals. Given the low population size and low reproductive potential of Sumatran rhinos, rapid genetic erosion is inevitable, though an under-appreciated concern is the potential for fixation of harmful genetic variants. Both concerns underscore 2 overriding priorities for the species: 1) translocation of wild rhinos to ex situ facilities, and 2) collection and storage of gametes and cell lines from every surviving captive and wild individual.
  3. Chen C, Granados A, Brodie JF, Kays R, Davies TJ, Liu R, et al.
    Conserv Biol, 2023 Nov 08.
    PMID: 37937455 DOI: 10.1111/cobi.14221
    Reliable maps of species distributions are fundamental for biodiversity research and conservation. The International Union for Conservation of Nature (IUCN) range maps are widely recognized as authoritative representations of species' geographic limits, yet they might not always align with actual occurrence data. In recent area of habitat (AOH) maps, areas that are not habitat have been removed from IUCN ranges to reduce commission errors, but their concordance with actual species occurrence also remains untested. We tested concordance between occurrences recorded in camera trap surveys and predicted occurrences from the IUCN and AOH maps for 510 medium- to large-bodied mammalian species in 80 camera trap sampling areas. Across all areas, cameras detected only 39% of species expected to occur based on IUCN ranges and AOH maps; 85% of the IUCN only mismatches occurred within 200 km of range edges. Only 4% of species occurrences were detected by cameras outside IUCN ranges. The probability of mismatches between cameras and the IUCN range was significantly higher for smaller-bodied mammals and habitat specialists in the Neotropics and Indomalaya and in areas with shorter canopy forests. Our findings suggest that range and AOH maps rarely underrepresent areas where species occur, but they may more often overrepresent ranges by including areas where a species may be absent, particularly at range edges. We suggest that combining range maps with data from ground-based biodiversity sensors, such as camera traps, provides a richer knowledge base for conservation mapping and planning.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links