Displaying all 2 publications

Abstract:
Sort:
  1. Hizam DA, Jong WL, Zin HM, Ng KH, Ung NM
    Med Dosim, 2021 04 08;46(3):310-317.
    PMID: 33838998 DOI: 10.1016/j.meddos.2021.03.003
    Intensity-modulated radiotherapy (IMRT) treatment planning for head and neck cancer is challenging and complex due to many organs at risk (OAR) in this region. The experience and skills of planners may result in substantial variability of treatment plan quality. This study assessed the performance of IMRT planning in Malaysia and observed plan quality variation among participating centers. The computed tomography dataset containing contoured target volumes and OAR was provided to participating centers. This is to control variations in contouring the target volumes and OARs by oncologists. The planner at each center was instructed to complete the treatment plan based on clinical practice with a given prescription, and the plan was analyzed against the planning goals provided. The quality of completed treatment plans was analyzed using the plan quality index (PQI), in which a score of 0 indicated that all dose objectives and constraints were achieved. A total of 23 plans were received from all participating centers comprising 14 VMAT, 7 IMRT, and 2 tomotherapy plans. The PQI indexes of these plans ranged from 0 to 0.65, indicating a wide variation of plan quality nationwide. Results also reported 5 out of 21 plans achieved all dose objectives and constraints showing more professional training is needed for planners in Malaysia. Understanding of treatment planning system and computational physics could also help in improving the quality of treatment plans for IMRT delivery.
  2. Hizam DA, Tan LK, Saad M, Muaadz A, Ung NM
    Phys Eng Sci Med, 2024 Apr 22.
    PMID: 38647633 DOI: 10.1007/s13246-024-01411-2
    This study aims to assess the accuracy of automatic atlas-based contours for various key anatomical structures in prostate radiotherapy treatment planning. The evaluated structures include the bladder, rectum, prostate, seminal vesicles, femoral heads and penile bulb. CT images from 20 patients who underwent intensity-modulated radiotherapy were randomly chosen to create an atlas library. Atlas contours of the seven anatomical structures were generated using four software packages: ABAS, Eclipse, MIM, and RayStation. These contours were then compared to manual delineations performed by oncologists, which served as the ground truth. Evaluation metrics such as dice similarity coefficient (DSC), mean distance to agreement (MDA), and volume ratio (VR) were calculated to assess the accuracy of the contours. Additionally, the time taken by each software to generate the atlas contour was recorded. The mean DSC values for the bladder exhibited strong agreement (>0.8) with manual delineations for all software except for Eclipse and RayStation. Similarly, the femoral heads showed significant similarity between the atlas contours and ground truth across all software, with mean DSC values exceeding 0.9 and MDA values close to zero. On the other hand, the penile bulb displayed only moderate agreement with the ground truth, with mean DSC values ranging from 0.5 to 0.7 for all software. A similar trend was observed in the prostate atlas contours, except for MIM, which achieved a mean DSC of over 0.8. For the rectum, both ABAS and MIM atlases demonstrated strong agreement with the ground truth, resulting in mean DSC values of more than 0.8. Overall, MIM and ABAS outperformed Eclipse and RayStation in both DSC and MDA. These results indicate that the atlas-based segmentation employed in this study produces acceptable contours for the anatomical structures of interest in prostate radiotherapy treatment planning.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links