Displaying all 2 publications

Abstract:
Sort:
  1. Barden A, Phillips M, Hill LM, Fletcher EM, Mas E, Loh PS, et al.
    PMID: 30471772 DOI: 10.1016/j.plefa.2018.11.004
    INTRODUCTION: The synthetic glucocorticoid dexamethasone is a commonly administered antiemetic. It has immunosuppressive effects and may alter postoperative blood glucose concentrations. Dexamethasone can effect key enzymes involved in inflammation resolution that is an active process driven by specialised lipid mediators of inflammation resolution (SPM). The purpose of this study in healthy volunteers was to examine whether dexamethasone effects cell populations and synthesis of SPM that are critical for the resolution of inflammation.

    METHODS: Thirty-two healthy volunteers were randomly allocated to receive saline (Control) or dexamethasone 2 mg, 4 mg or 8 mg intravenously. Venous blood samples were collected at baseline before administration of treatment, and at 4 h, 24 h and one-week post-treatment. At each time point, measurements included blood glucose and macrophage migration inhibition factor (MMIF), full blood count including lymphocyte subsets, monocytes, neutrophils, eosinophils and basophils by flow cytometry, and plasma SPM using liquid chromatography tandem mass spectrometry. The effect of dexamethasone dose and time on all measures was analysed using linear mixed models.

    RESULTS: There was a dose-dependent increase in neutrophil count after dexamethasone that persisted for 24 h. In contrast, there was a dose-dependent reduction in counts of monocytes, lymphocytes, basophils and eosinophils 4 h after dexamethasone, followed by a rebound increase in cell counts at 24 h. Seven days after administration of dexamethasone, all cell counts were similar to baseline levels. MMIF concentration, glucose and natural killer cell counts were not significantly affected by dexamethasone. There was a significant gender effect on plasma SPM such that levels of 17-HDHA, RvD1, 17R-RvD1 and RvE2 in females were on average 14%-50% lower than males. In a linear mixed model that adjusted for neutrophil count, there was a significant interaction between the dose of dexamethasone and time, on plasma 17R-RvD1 such that plasma 17R-RvD1 fell in a dose-dependent manner until 4 h after administration of dexamethasone. There were no significant effects of dexamethasone on the other plasma SPM (18-HEPE, RvE2, 17-HDHA, RvD1, RvD2 and 14-HDHA) measured.

    DISCUSSION: This is the first study in healthy volunteers to demonstrate that commonly employed antiemetic doses of dexamethasone affect immune cell populations and plasma levels of 17R-RvD1 an SPM with anti-nociceptive properties. If similar changes occur in surgical patients, then this may have implications for acute infection risk in the post-operative period.

  2. Lu Q, Long H, Chow S, Hidayat S, Danarti R, Listiawan Y, et al.
    J Autoimmun, 2021 09;123:102707.
    PMID: 34364171 DOI: 10.1016/j.jaut.2021.102707
    Cutaneous lupus erythematosus (CLE) is an inflammatory, autoimmune disease encompassing a broad spectrum of subtypes including acute, subacute, chronic and intermittent CLE. Among these, chronic CLE can be further classified into several subclasses of lupus erythematosus (LE) such as discoid LE, verrucous LE, LE profundus, chilblain LE and Blaschko linear LE. To provide all dermatologists and rheumatologists with a practical guideline for the diagnosis, treatment and long-term management of CLE, this evidence- and consensus-based guideline was developed following the checklist established by the international Reporting Items for Practice Guidelines in Healthcare (RIGHT) Working Group and was registered at the International Practice Guideline Registry Platform. With the joint efforts of the Asian Dermatological Association (ADA), the Asian Academy of Dermatology and Venereology (AADV) and the Lupus Erythematosus Research Center of Chinese Society of Dermatology (CSD), a total of 25 dermatologists, 7 rheumatologists, one research scientist on lupus and 2 methodologists, from 16 countries/regions in Asia, America and Europe, participated in the development of this guideline. All recommendations were agreed on by at least 80% of the 32 voting physicians. As a consensus, diagnosis of CLE is mainly based on the evaluation of clinical and histopathological manifestations, with an exclusion of SLE by assessment of systemic involvement. For localized CLE lesions, topical corticosteroids and topical calcineurin inhibitors are first-line treatment. For widespread or severe CLE lesions and (or) cases resistant to topical treatment, systemic treatment including antimalarials and (or) short-term corticosteroids can be added. Notably, antimalarials are the first-line systemic treatment for all types of CLE, and can also be used in pregnant patients and pediatric patients. Second-line choices include thalidomide, retinoids, dapsone and MTX, whereas MMF is third-line treatment. Finally, pulsed-dye laser or surgery can be added as fourth-line treatment for localized, refractory lesions of CCLE in cosmetically unacceptable areas, whereas belimumab may be used as fourth-line treatment for widespread CLE lesions in patients with active SLE, or recurrence of ACLE during tapering of corticosteroids. As for management of the disease, patient education and a long-term follow-up are necessary. Disease activity, damage of skin and other organs, quality of life, comorbidities and possible adverse events are suggested to be assessed in every follow-up visit, when appropriate.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links